

KÜHLWASSER – CONTROLLER

für Leitfähigkeit und Redox-Wert

WWW.ERMES-SERVER.COM

Betriebsanleitung lesen!

Bei Installations- oder Bedienfehlern haftet der Betreiber!

DE

Warnung!

Diese Betriebsanleitung enthält wichtige Sicherheitsinformationen. Bei Nichtbeachten drohen schwere Personen- und Sachschäden.

Lesen Sie diese Betriebsanleitung zuerst <u>vollständig</u> durch, bevor Sie mit der Montage und Inbetriebnahme beginnen! Bei Schäden durch Installations- oder Bedienfehler haftet der Betreiber!

Werfen Sie diese Anleitung nicht weg und bewahren Sie sie in der Nähe des Gerätes auf.

Hinweis:

Informationen und Spezifikationen in dieser Anleitung können unvollständig oder überholt sein. Beschaffen sie sich die jeweils aktuellste Version gegebenenfalls beim Hersteller. Druckfehler und technische Änderungen ohne Vorankündigung vorbehalten.

Inhaltsverzeichnis

1.	Über dieses Gerät	5			
1.1	Konformitätserklärung 5				
	-				
2.	Lieferumfang	5			
2	Sigharhait	C			
3 .	Verwendete Symbole	6			
3.1	Sicherheitshipweise	0			
5.2	Schemeitsminweise	0			
4.	Montage – Installation	7			
4.1	Montage	7			
4.2	Montage der Leitfähigkeitsmesszelle, sowie der Redox-Elektroden	7			
4.3	Elektrischer Anschluss	8			
4.4	Elektrischer Anschluss/Klemmenplan Version ab 01/2018	9			
4.5	Elektrischer Anschluss/Klemmenplan Version bis 12/2017	11			
4.6	Elektrischer Anschluss der Leitfähigkeitsmesszelle	13			
4.7	Anschluss -Motorkugelhahn	14			
5	Inhotriobnahma - Außerhetriebnahme - Wartung	15			
J. 5 1	Kalibrierung der Messzellen und Elektroden	15			
5.2	Hydraulische Inbetriebnahme	15			
53	Außerbetriebnahme/Stilllegung	10			
4 4		16			
7.7		10			
6.	Geräteübersicht	17			
6.1	Hauptdisplay	17			
6.2	Bedienelement <i>"Encoder"</i>	18			
6.3	Status-Ebene	19			
7.	Hauptmenü	21			
7.1	Setup – Menü	22			
7.1.1	Inhibitor – Dosierung	23			
7.1.2	Biozid 1 +2 – Dosierung	25			
7.1.3	Absalzen	28			
7.1.4	Durchfluss – Wasserzähler konfigurieren	29			
7.1.5	Sollwert mV – Dosierung eines oxidierenden Biozids	30			
7.1.6	Alarm – Konfiguration der Alarmmeldungen	32			
7.1.7	Passcode – Password für das "Setup" - Menü	34			
7.1.8	Einheiten – Konfiguration der Maßeinheiten	34			
7.1.9	Optionen – Konfiguration der Grundeinstellungen	35			
	Rücksetzen auf Werkseinstellungen	36			
7.1.10	Uhr – Datum und Uhrzeit einstellen	37			
7.1.11	Manuell – Manueller Betrieb	38			
7.1.12	RS 485 – Schnittstelle konfigurieren	39			
7.1.13	GSM – SMS – Meldungen konfigurieren	40			
7.1.14	TCP IP – ETHERNET – Schnittstelle konfigurieren	41			
7.1.15	GPRS – Mobilfunkmodem konfigurieren	43			
7.1.16	Email – Email – Nachrichten konfigurieren	43			
7.1.17	DatenLog – Datenlogger konfigurieren	45			
7.1.18	MODBUS – Konfiguration der MODBUS RTU Schnittstelle	46			

7.2	Menü Elektroden	47
7.2.1	Kalibrieren µS – Kalibrierung der Leitfähigkeitsmessung	48
7.2.2	Kalibrieren mV – Kalibrierung der mV-Messung	51
7.2.3	Kalibrieren Temp – Kalibrierung der Temperaturmessung	52
7.2.4	Passcode – Passwort für das Menü <i>"Elektroden"</i>	52
8.	Technische Daten	53
	Anhang: Montagebeispiel PA-MTOWER	54

1. Über dieses Gerät

Das "MTOWER PLUS" ist ein voll ausgestattetes Mess- und Regelgerät zur Überwachung und Einstellung einer optimalen Kühlwasserqualität in offenen und geschlossenen Kühlsystemen.

Die Mess- und Regelwerte werden auf einem hintergrundbeleuchteten Grafikdisplay (240 x 64 Pixel) angezeigt. Die Einstellung und Parametrierung des Gerätes erfolgt mit einem Dreh- und Drückknopf; dem sog. "Encoder".

Neben einer leitfähigkeitsgesteuerten Absalzfunktion (Bleed) und einer messwertgesteuerten mV-Regulierung verfügt das Gerät über vier timer-gesteuerte Ausgänge für zwei Biozide und zwei Biozid-Aktivatoren/Dispergatoren, sowie einen Ausgang für eine proportionale Inhibitordosierung.

Weiterhin ist das Gerät mit fünf Digitaleingängen zum Anschluss von Niveauschaltern für die Erfassung des Füllstandes in den Chemikalienbehältern (Leermelder), sowie über einen weiteren Digitaleingang zum Anschluss einer Durchflussüberwachung für die Messwasserleitung ausgestattet. Zwei Impulskontakteingänge für den Anschluss von Kontaktwasserzählern für Frischwasser *"Feed"* und Absalzwasser *"Bleed"* vervollständigen die Ausstattung.

Hinweis:

Zur Vereinfachung wird nachfolgend für das oxidierende Biozid die Bezeichnung "Chlor" verwendet.

1.1 Konformitätserklärung

CE

Dieses Gerät wurde unter Beachtung der geltenden europäischen Normen und Richtlinien entwickelt und unterliegt einer entsprechenden Qualitätsüberwachung.

Die Geräte der Serie "MTOWER" entsprechen den folgenden EU-Normen:

- 2005/42/CE Richtlinie zur Verwendung des CE-Zeichens.
- 2004/108/CE Richtlinie zur elektromagnetischen Verträglichkeit von Betriebsmitteln.
- 2006/95/CE Niederspannungsrichtlinie.

Hinweis:

Eine entsprechende Konformitätserklärung kann bei Ihrem Händler angefordert werden.

2. Lieferumfang

- 1 MTOWER Gerät
- 4 Befestigungsschrauben mit Dübel, 6 mm
- 1 Feinsicherung 5 x 20 mm, 6,3 A träge (Hauptsicherung)
- 1 Feinsicherung 5 x 20 mm, 3,15 A träge (Sicherung für Relaisausgänge)
- 1 Bedienungsanleitung Deutsch

3. Sicherheit

3.1 Verwendete Symbole in dieser Anleitung

Warnung:

Dieses Symbol warnt vor Gefahren. Bei Nichtbeachten drohen schwere Personen- und Sachschäden.

Achtung!

Dieses Zeichen warnt vor möglichen Störungen durch Fehlbedienung.

Hinweis oder Empfehlung:

Dieses Zeichen macht auf wichtige Informationen aufmerksam.

3.2 Sicherheitshinweise

Die bestimmungsgemäße Verwendung ist in dieser Betriebsanleitung beschrieben.

Warnung:

- Nicht bestimmungsgemäße Verwendung stellt Sicherheit und Funktion des Gerätes und angeschlossener Anlagen in Frage und ist deshalb unzulässig.
- Anschluss und Wartung des Gerätes dürfen nur von geschultem Personal durchgeführt werden.
- Reparaturen d
 ürfen nur direkt beim Hersteller oder durch autorisierte Servicestellen erfolgen. Eingriffe und Ver
 änderungen an dem Ger
 ät au
 ßer den erforderlichen Wartungsarbeiten gem
 äß Betriebsanleitung sind unzul
 ässig und machen alle Garantieanspr
 üche nichtig.
- Der Betreiber haftet für die Einhaltung örtlich geltender Sicherheitsbestimmungen.
- Das Gerät muss zur Bedienung und Wartung jederzeit zugänglich sein.
- Vor Arbeiten/Reparaturen an den angeschlossenen Dosierpumpen immer zuerst den Dosierkopf druckentlasten, entleeren und spülen.
- Die Sicherheitsdatenblätter der Dosiermedien beachten.
- Beim Umgang mit gefährlichen oder unbekannten Dosiermedien Schutzkleidung tragen.

4. Montage – Installation

Die Montage und Inbetriebnahme des Gerätes erfolgt in sechs Schritten:

- 1. Montage des Gerätes und der Durchflussarmatur mit den Messzellen/Elektroden
 - 2. Elektrischer Anschluss
 - 3. Kalibrierung der Leitfähigkeitsmesszelle
 - 4. Kalibrierung der mV-Elektrode
 - 5. Kalibrierung der Redox-Elektrode
 - 6. Anpassung der Geräteparameter an die Betriebsbedingungen

4.1 Montage

Montieren Sie das Gerät an einer senkrechten Wand.
 Verwenden Sie dazu die vier im Gehäuse vorgesehenen Befestigungsbohrungen.

Achtung!

- Das Gerät muss für Wartungsarbeiten von allen Seiten frei zugänglich sein.
- Der Montageort muss trocken und jederzeit gut durchlüftet sein!
- Setzen Sie das Gerät keiner direkten Sonneneinstrahlung aus.
- Montieren Sie das Gerät nicht direkt unterhalb wasserführender Leitungen.

4.2 Montage der Leitfähigkeitsmesszelle, sowie der Redox-Elektrode

Verwenden Sie für eine funktionale Montage eine der folgenden Durchflussarmaturen: Wenn die Impfstellen der Dosierpumpen und der Absalzkugelhahn mit an die Durchflussarmatur montiert sein sollen:

• MANIFOLD-PLUS ...

Wenn die Impfstellen der Dosierpumpen und der Absalzkugelhahn aufgrund der örtlichen Montagebedingungen oder der Anlagengröße direkt in das Kühlsystem montiert werden sollen:

• PEF23.... mit NFIL-Schutzfilter

Allgemeine Hinweise:

- Installieren Sie die Durchflussarmatur in eine Bypass-Leitung auf der Druckseite der Kühlwasserpumpen.
- Versehen Sie die Bypassleitung mit Absperrventilen, damit Sie die Messzellen zur Reinigung und Kalibrierung während des laufenden Kühlbetriebes demontieren können.
- Positionieren Sie die Durchflussarmatur so in die Bypass-Leitung, dass sie auch bei stillstehender Umwälzpumpe vollständig mit Wasser gefüllt bleibt und nicht austrocknet.

Empfehlung für induktive Messzellen Typ ECDIND und ECDSIND

Verwenden Sie für den Einbau der induktiven Messzellen die passenden Armaturen:

Tab. 4.1: Durchfluss- und Eintaucharmaturen

Durchflussarmaturen	MANIFOLD ECDIND, MANIFOLD ECSDIND und PEF23 PEL-IND, PVC, DN 32 (Klebemuffen 40 mm), max. 7 bar, max. 40 °C PEL-INDC, PVCC, DN 32 (Klebemuffen 40 mm), max. 7 bar, max. 80 °C PEL-IND-SS, Edelstahl, DN 40, 1 ½" Muffen, max. 7 bar, max. 80 °C
Eintaucharmatur	PEC IND, PVC, Eintauchtiefe 1 m (Standard), max. 40 °C

Achtung!

Gehen Sie bei der Montage der Messzelle und der Elektroden gemäß den Montageanweisungen der jeweiligen Bedienungsanleitung vor.

4.3 Elektrischer Anschluss

• Führen Sie die Spannungsversorgung (siehe Typenschild) bis in die unmittelbare Nähe des Gerätes und installieren Sie eine entsprechende Steckdose (Feuchtraum-Ausführung).

Achtung!

Das Gerät hat keinen Schalter zur Unterbrechung der Spannungsversorgung. Deshalb hat der Netzstecker des Gerätes auch eine Not-Aus-Funktion!

Schließen Sie <u>entweder</u> eine Messwasser-Durchflussüberwachung – z.B. Typ *"SEPR"* oder Typ *"MA-NIFOLD"* an, <u>oder</u> schleifen Sie einen potentialfreien Hilfskontakt (N.O.) der Kühlwasser-Umwälzpumpe über die Klemmen 34 – 35, damit das Gerät in den Betriebsmodus "Stand-by" geht, wenn die Umwälzpumpe nicht in Betrieb ist.

Warnung:

Stellen Sie jederzeit sicher, dass das Gerät bei mangelndem Messwasserfluss in den Betriebsmodus *"Stand-by"* geht, oder abgeschaltet wird!

Elektrischer Anschluss/Klemmenplan Version ab 01/2018

elener angen		
F1	6,3 A Träge (Hauptsicherung)	
F2	3,15 A Träge (Elektroniksicherung)	

	Spannungsversorgung, Relaisausgänge potentialfrei		
L	ш	Ν	Versorgungsspannung 90 – 265 VAC
1	Е	Ν	D1 mV (Biozid 1)
2	Е	Ν	D1 Inhibitor
3	Е	Ν	D1 Biozid 1
4	Е	Ν	Biozid 2
5	Е	Ν	Biodispergator 1 (PBIO 1)
6	E	Ν	Biodispergator 2 (PBIO 2)

	Relaisausgänge, potentialfrei		
N.C.	С	N.O.	
7	8	9	Absalzventil
10	11	12	Alarmausgang

4.4

Transistorausgänge AN/AUS für Dosierpumpen			
_	+		
1	2	D1 mV (Biozid 1)	
3	4	D1 Biozid 2	
5	6	D1 Biodispergator 1 (PBio1)	
7	8	D1 Biodispergator 2 (PBio1)	

LEVEL Digitaleingänge		
Ι	+	
29	30	Biozid 1
31	32	Biozid 2
33	34	Bio-Dispergator 1 (PBio1)
35	36	Bio-Dispergator 2 (PBoi2)
37	38	Inhibitor
55	54	mV

Tran	Transistorausgänge Pulsfrequenz für Dosierpumpen				
_	+				
9	10	P1 mV			
11	12	P1 Inhibitor			

0/4 – 20 mA Analogausgänge (galvanisch getrennt)			
—	+		
	14	Leitwert	
13	15	Temperatur	
	16	mV-Wert (Redoxpotential)	

RS 485 – Schnittstelle		
26	+	Signal (A)
27		Signal (B)

Durchflussüberwachung "MANIFOLD"								
37 39 40 41								
– Seele Schirm –								

Brücke

Wasserzähler Frischwasser "W.M. IN"						
42 43 44						
Signal GND Typ "Magnetkontakt						
+12VDC	Signal	GND	Typ "Open Collector"			

Wasserzähler Absalzung "W.M. BLEED"							
45 46 47							
	GND	Signal	Typ <i>"Magnetkontakt"</i>				
+12VDC	Signal	GND	Typ "Open Collector"				

Pt100 Temperaturfühler

4.5 Elektrischer Anschluss/Klemmenplan Version bis 12/2017

Sicherungen				
F1 6,3 A Träge (Hauptsicherung)				
F2	3,15 A Träge (Elektroniksicherung)			

Spannungsversorgung, Relaisausgänge 90 – 230 VAC			
L	Е	Ν	Versorgungsspannung 90 – 265 VAC
01	Е	Ν	D1 mV (Redox)
02	Е	Ν	D1 Inhibitor
03 E N Biozid 1			
04	04 E N Biozid 2		
05	Е	Ν	Bio-Dispergator 1 (PBIO 1)
06	Е	Ν	Bio-Dispergator 2 (PBIO 2)

Relaisausgänge, potentialfrei					
N.C. C N.O.					
07	08	09	Absalzventil (BLEED)		
10	11	12	Alarmausgang		

Impulsausgänge für Dosierpumpen				
_	+			
01	02	Biozid 1		
03	04	Biozid 2		
05	06	Bio-Dispergator 1		
07	08	Bio-Dispergator 2		
09	10	P1 mV (Redox)		
11	12	P1 Inhibitor		

LEVEL Digitaleingänge				
-	+			
24	25	Biozid 1		
26	27	Biozid 2		
28	29	Bio-Dispergator 1		
30	31	Bio-Dispergator 2		
32	33	Inhibitor		
45	44	mV (Redox)		

0/4 – 20 mA Analogausgänge (galvanisch getrennt)					
- +					
	14	Leitwert			
13	15	Temperatur			
	16	mV-Wert (Redox)			

RS 485 – Schnittstelle				
20		GND		
21	+	Signal (A)		
22	-	Signal (B)		

Durchflussüberwachung "MANIFOLD"							
32	32 34 35 36						
(–)	(-) Weiß Schwarz (-)						
		(Seele)	(Schirm)				

Durchflussüberwachung "SEPR"									
32		34	35	36					
(–)		Braun (+)	Schwarz	Blau (–)					
	Drücke								

Brücke

Hinweis:

Brücke

Werden für die Montage der Messzellen und Elektroden Durchflussarmaturen mit einer "MA-NIFOLD" – und einer "SEPR" – Durchflussüberwachung verwendet, dann können Sie die Durchflussüberwachungen beider Armaturen gemäß obiger Anleitung an die gleichen Klemmen anschließen!

Pt100 Temperaturfühler "ETEPT"						
40	41	42	43			
Grün	Braun	Weiß	Gelb			

Entfernen Sie den Widerstand zur Montage des Temperaturfühlers

Wasserzähler Frischwasser "W.M. 1"						
37	38	39				
	Signal	GND	Typ "Magnetkontakt"			
		BNC <i>"W.M. IN"</i>				
+12VDC	Signal	GND	Typ "Open Collector"			

Wasserzähler Absalzung "W.M. 2"						
37	45	46				
	GND	Signal	Typ "Magnetkontakt"			
BNC "W.M. BLE						
+12VDC	GND	Signal	Typ "Open Collector"			

4.6 Elektrischer Anschluss der Leitfähigkeitsmesszelle

Modul MDCD

Modul MDIND

Konduktive Leitfähigkeitsmesszellen							
N	lodul MDC	D		Klemme	Messzelle		
1	2	3	50	51	52	53	Тур
Blau	Schwarz	Rot					ECDC/1
Blau	Schwarz	Rot					ECDIC/1
Blau	Schwarz	Rot	Grün	Braun	Weiß	Gelb	ECDCCEPT/1
Blau	Schwarz	Rot	Grün	Braun	Weiß	Gelb	ECDICEPT/1

Version bis 12/2017:

Konduktive Leitfähigkeitsmesszellen							
N	Iodul MDC	D		Klemme	enleiste		Messzelle
1	2	3	40	41	42	43	Тур
Blau	Schwarz	Rot					ECDC/1
Blau	Schwarz	Rot					ECDIC/1
Blau	Schwarz	Rot	Grün	Braun	Weiß	Gelb	ECDCCEPT/1
Blau	Schwarz	Rot	Grün	Braun	Weiß	Gelb	ECDICEPT/1

Jumper					
J5					
J4					
J3					

Version ab 01/2018:

Induktive Leitfähigkeitsmesszelle Typ ECDSIND PT								
Ν	/lodul M	DIND				Klen	nmenleiste	•
1	2	3			50	51	52	53
Blau	Grün	Rot			Weiß	Weiß	Schwarz	Schwarz

Version bis 12/2017:

Induktive Leitfähigkeitsmesszelle Typ ECDSIND PT								
Ν	/lodul M	DIND				Klen	nmenleiste	;
1	2	3			40	41	42	43
Blau	Grün	Rot			Weiß	Weiß	Schwarz	Schwarz

4.7 Anschluss Motorkugelhahn

5. Inbetriebnahme – Außerbetriebnahme – Wartung

Nachdem Sie alle hydraulischen und elektrischen Anschlüsse hergestellt haben, können Sie das Gerät in Betrieb nehmen.

5.1 Kalibrierung der Messzellen und Elektroden

Achtung!

Der sorgfältige Umgang mit den Messzellen und Elektroden gemäß deren Betriebsanleitungen und eine regelmäßige Überprüfung der ordnungsgemäßen Funktion sind entscheidend für einen sicheren Betrieb der gesamten Anlage!

Kalibrierung der Leitfähigkeitsmesszelle

Kalibrierung mit einer Standardlösung:

- Messen Sie vor der Kalibrierung die Temperatur des Kühlwassers und schauen Sie auf dem Etikett der Standardlösung nach, welcher Wert für die Kalibrierung benutzt werden sollte.
- Drehen Sie die Leitwertsonde aus der Bypassleitung heraus und reinigen Sie die Sonde mit einem Haushaltspapier von Schleim- und Hydroxidbelägen.
- Führen Sie die Kalibrierung mit leichtem Schwenken der Leitwertsonde in der Standardlösung durch, wie es in Kapitel 7.2.1 *"Kalibrieren μS"* beschrieben ist.

Kalibrierung einer neuen, bzw. sauberen Messzelle mit einem Leitfähigkeits-Handmessgerät:

- Entnehmen Sie eine Probe des Kühlwassers aus dem Probenahmehahn der Bypassleitung.
- Messen Sie vor der Kalibrierung die Temperatur des Kühlwassers.
- Tauchen Sie die Leitwertsonde des Handmessgerätes in die Kühlwasserprobe und lesen Sie den Leitwert vom Handmessgerät ab.
- Führen Sie die Kalibrierung mit leichtem Schwenken der Leitwertsonden in der Kühlwasserprobe durch, wie es in Kapitel 7.2.1 *"Kalibrieren μS"* beschrieben ist.

Kalibrierung einer verschmutzten Messzelle mit einem Leitfähigkeits-Handmessgerät:

- Entnehmen Sie eine Probe des Kühlwassers aus dem Probenahmehahn der Bypassleitung.
- Messen Sie vor der Kalibrierung die Temperatur des Kühlwassers.
- Drehen Sie die Leitwertsonde aus der Bypassleitung heraus und reinigen Sie die Sonde mit einem Haushaltspapier von Schleim- und Hydroxidbelägen.
- Tauchen Sie die Leitwertsonden des "MTOWER" und des Handmessgerätes in die Kühlwasserprobe und lesen Sie den Leitwert vom Handmessgerät ab.
- Führen Sie die Kalibrierung mit leichtem Schwenken der Leitwertsonden in der Kühlwasserprobe durch, wie es in Kapitel 7.2.1 *"Kalibrieren μS"* beschrieben ist.

Kalibrierung der mV-Elektrode

Führen Sie die Kalibrierung mit leichtem Schwenken der mV-Elektrode in den Pufferlösungen durch, wie es in Kapitel 7.2.2 *"Kalibrieren mV"* beschrieben ist.

5.2 Hydraulische Inbetriebnahme

• Überprüfen Sie zuerst noch einmal, ob alle Anschlüsse vorgenommen wurden und ob die Verschraubungen auch alle angezogen sind.

Hinweis/Empfehlung:

Bei der hydraulischen Inbetriebnahme empfiehlt es sich, die Dosierpumpen zunächst erst mit sauberem Wasser an Stelle der Chemikalien zu betreiben, um bei evtl. Undichtigkeiten keine Chemikalien unkontrolliert zu verspritzen!

- Stecken Sie den Netzstecker des Gerätes in die Steckdose, um die Steuerung zu starten.
- Nehmen Sie die Dosierpumpen in Betrieb, wie es in der Bedienungsanleitung der Pumpen beschrieben wird.
- Prüfen Sie bei laufenden Pumpen, ob alle Anschlüsse leckagefrei und dicht sind.

Die hydraulische Inbetriebnahme ist damit durchgeführt und Sie können nun gegebenenfalls die Axial-Fußfilter, bzw. Sauglanzen der Pumpen in die Chemikalienbehälter stellen.

5.3 Außerbetriebnahme/Stilllegung

Bei einer kurzfristigen Außerbetriebnahme über 1 – 2 Wochen reicht es aus, wenn Sie den Netzstecker des Gerätes ziehen und die Absperrarmaturen des Bypassleitung schließen.

Bei einer längerfristigen Außerbetriebnahme/Stilllegung – z.B. über Frostperioden etc. – sollten Sie folgende Maßnahmen durchführen:

- Bauern Sie die Redox-Elektroden aus der Durchflussarmatur aus und lagern Sie sie entsprechend den Anweisungen der jeweiligen Bedienungsanleitung.
- Verfahren Sie mit den angeschlossenen Dosierpumpen gemäß deren Betriebsanleitungen.
- Entleeren Sie die Bypassleitung vollständig.
- Ziehen Sie zum Abschluss den Netzstecker, um das Gerät spannungsfrei zu machen.

5.4 Überprüfungs-/Wartungsintervalle

Für den sicheren und ordnungsgemäßen Betrieb des Gerätes ist die regelmäßige Überprüfung, Reinigung und gegebenenfalls Kalibrierung der Messelektroden, bzw. Messzellen unerlässlich! Nur so kann eine zu große Aufsalzung des Kühlwassers verhindert und/oder ein unnötiger Chemikalienverbrauch vermieden werden.

Aus diesem Grund sind folgende Wartungsintervalle zu empfehlen:

Tab. 5.1: Wartungsintervalle

Überprüfung der Leitfähigkeit des Kühlwassers mit einem geeigneten Handmessgerät	Täglich
Überprüfung des mV-Wertes im Kühlwasser mit einem geeigneten Handmessgerät	Täglich
Überprüfung der Chlorkonzentration im Kühlwasser mit einem geeigneten Fotometer	Täglich
Überblick über die gesamte Anlage und Prüfung auf Undichtigkeiten	Täglich
Reinigung/Überprüfung/gegebenenfalls Kalibrierung der Messelektroden, bzw. Messzellen	Nach Erfordernis, mindestens aber monatlich

Achtung!

- Verlassen Sie sich <u>niemals</u> nur auf die Messwerte des "MTOWER".
- Führen Sie regelmäßig Vergleichsmessungen mit einem geeigneten Messgerät durch!

6. Geräteübersicht

Hauptdisplay 6.1

Das Hauptdisplay zeigt folgende Informationen an:

- A: Datum
- B: Uhrzeit
- C: Leitfähigkeit in Mikrosiemens pro Zentimeter [µS/cm]
- D: mV-Wert (Redox-Wert)
- E: Aktueller Betriebsstatus oder "Alarm" im Falle einer Störung -> siehe auch Kapitel 6.3 "Status-Ebene"
- F: Aktueller Temperaturmesswert

Tab. 6.1: Anzeigen Betriebsstatus

Anzeige	Funktion/Ursache	Reaktion
INHIBITOR	Dosierung P1 Inhibitor oder D1 Inhibitor aktiv Relaisausgang <i>"02-PE-N"</i>	Keine
Dosieren P1	Dosierung P1 mV aktiv	Keine
Dosieren D1	Dosierung D1 mV aktiv Relaisausgang <i>"01-PE-N"</i>	Keine
BIOCID 1 oder 2	Dosierung Biozid 1 oder 2 aktiv Relaisausgang <i>"03-PE-N" oder "04-PE-N"</i>	Keine
Absalzen hh:mm	Absalzung aktiv seit xx Stunden und xx Minuten Relaisausgang <i>"07-08-09</i> " aktiv	Keine
Absalz-Timeout	Das Absalz-Zeitlimit ist überschritten	Prüfen Sie die Funktion des Absalz- ventils, sowie die Einstellungen für die Biozid-Dosierungen
Vorabsalzen	Absalzung <u>vor</u> einer Biozid-Dosierung aktiv Relaisausgang <i>"07-08-09"</i>	Keine
VorBiozid 1 oder 2	Dosierung Bio-Dispergator 1 oder 2 aktiv Relaisausgang <i>"05-PE-N"</i> oder <i>"06-PE-N"</i>	Keine

Anzeige	Funktion/Ursache	Reaktion
Lockout 1 oder 2	Das Absalzventil bleibt während und nach einer Biozid-Dosierung für eine programmierte Zeit geschlossen	Keine
Alarm	Alarmausgang Relaisausgang <i>"10-11-12"</i> aktiv	Öffnen Sie die Status-Ebene durch Drehen des Encoders und ermitteln Sie die Ursache des Alarms

6.2 Bedienelement "Encoder"

Rechts neben dem Display befindet sich ein Dreh-/Drückknopf - das sog. "Encoder".

Den Encoder kann in beide Richtungen gedreht werden, um die Menüs durchzublättern (sog. "Scrollen"), oder eine Funktion auszuwählen. Die jeweils ausgewählte Funktion ist invers dargestellt und kann durch Drücken des Encoders aktiviert/geöffnet werden.

 Verlassen Sie ein Untermenü nach der Eingabe eines Wertes, oder der Auswahl einer Funktion mit ESC, dann bleiben die *"alten"* Werte erhalten.

6.3 Status – Ebene

Vom Hauptdisplay gelangen Sie durch Drehen des Encoders nach rechts zur Staus-Ebene. Hier wird der aktuelle Betriebs- und Fehlermeldungsstatus des Gerätes angezeigt.

Status Ausgänge

Zeigt den Zustand der Relais- und Impulsausgänge an.

An	 Ausgang aktiv 	Aus	= Ausgang aus
VBio 1 und 2	= Bio-Dispergator 1 + 2	Bio 1 und 2	= Biozid 1 + 2
VAbs	= Vorabsalzung	Absal	= Absalzung
Inhib	= Inhibitor	Alarm	= Alarmausgang

Status Zähler

WM1 = Wasserzähler Nachspeisung WM2 = Wasserzähler Absalzmenge

Status Level

Zeigt den Schaltzustand der Leermelder in den Chemikalienbehältern an.

- Ok = Behälter nicht leer
- Le = Behälter leer

Status Alarm

Erscheint im Hauptdisplay die Anzeige "Alarm", dann können Sie in diesem Staus-Display nachschauen, um welche Störmeldung es sich handelt.

An	= Störung	Aus = keine Störung
µS Ho	= Leitwert zu hoch	µS Ni = Leitwert zu niedrig
Abs Z	= Absalzzeit überschritten	Fluss = kein Durchfluss
WZ1	= Wasserzähler 1	WZ2 = Wasserzähler 2
mV Ho	= mV-Wert zu hoch	mV Ni=mV-Wert zu niedrig
KF	= Konzentrationsfaktor	

Status Inhibitor WZ ppmWZ ppm:ml/HubModus:MultiplikationFaktor:4.00

Status Biozid Woche 2 von 4 Tag: Donnerstag Naechste = Biozid 1: 00:27 Kein Biozid 2

Log oeffnen

<u>Log oeffnen</u> 21/11/14 07:55 1234µS 024.7 °C 650 mV Bio1= Aus Inhib=Aus Absal= Aus Alarm=Aus

Service	
Cd	= 456 mV
mV	= - 34.2 mV
id 485	= 01
Code	= 624376

Status Inhibitor

Wird der Inhibitor proportional zum Frischwasser dosiert, dann sind in dieser Statusanzeige die Einstellwerte dargestellt.

Ist ein anderer Dosiermodus gewählt, steht im Display "WM ppm ausgeschaltet".

Weitere Informationen zur Einstellung der Inhibitordosierung finden Sie in Kapitel 7.1.1 "Inhibitordosierung".

Status Biozid

In diesem Display werden die aktuellen Dosierzeiten für die beiden Biozide angezeigt.

- Woche = x-te Woche von x programmierten Wochen
- Tag = Aktueller Tag
- Naechste = Biozid 1: xx:xx = Count-Down von Biozid 1 Dosierung Kein Biozid = es wird aktuell kein Biozid dosiert

Datenlogger

In diesem Display können Sie sich die im Datenlogger gespeicherten Daten anschauen.

- Drücken Sie den Encoder, um den Speicher zu öffnen.
- Drehen Sie den Encoder, um die gespeicherten Datensätze nacheinander anzuzeigen.
- Drücken Sie den Encoder erneut, um den Speicher wieder zu verlassen.

Service

In diesem Display werden die momentanen Eingangsspannungen der angeschlossenen Messelektroden und Sensoren, die Geräte-Ident.-Nummer *"ID 485"* im lokalen RS485-Netzwerk, sowie die Code-Nummer für die Webverbindung auf dem ERMES-Server angezeigt.

7. Hauptmenü

Vom Hauptdisplay können Sie durch Drücken des Encoders ins Hauptmenü gelangen. Vom Hauptmenü gelangen Sie wiederum in zwei Untermenüs, in denen das Gerät konfiguriert und die angeschlossenen Elektroden und Sensoren kalibriert werden können.

• Drücken Sie im Hauptdisplay den Encoder, um das Hauptmenü zu öffnen.

Das Hauptmenü hat zwei Untermenüs:

- Im Untermenü "Setup" nehmen Sie alle Geräteeinstellungen vor und konfigurieren Sie die Regelparameter.
- Im Untermenü "*Elektroden* können Sie die angeschlossenen Elektroden und Messzellen kalibrieren.
- Wählen Sie ein Untermenü aus und drücken Sie den Encoder, um das Menü zu öffnen. Es öffnet sich zunächst eine "Passcode" – Eingabe.
- Geben Sie im Passcode-Display einen 4-stelligen Zahlencode ein, in dem Sie die entsprechenden Zahlen nacheinander mit dem Encoder auswählen und durch Drücken eingeben.
 Sobald die 4. richtige Zahl eingegeben ist, öffnet sich das betreffende Untermenü automatisch.

Hinweis:

Jedes Untermenü ist durch einen eigenen *"Passcode"* gesichert. Bei Auslieferung oder nach einem RESET ist der Passcode "0 0 0 0".

7.1 Setup – Menü

Menue Setup	Beschreib	ung	Seite:
Inhibitor	Inhibitor	– Dosierung	23
Biozid 1	Biozid 1	– Dosierung	25
Biozid 2	Biozid 2	– Dosierung	25
🚽 Biozid 1			
Menue Setup			
Absalzen	Absalzen	 Leitwert-Grenzwerte f ür Absalzung setzen 	28
Sollwert mV	Sollwert m\	/ – Regelwerte für mV-Dosierung einstellen	30
Durchfluss	Durchfluss	 Wasserzähler skalieren (und zurücksetzen) 	29
← Sollwert mV			
Menue Setun			
Alarm	Alarm	- Bedingungen und Reaktionen einstellen	32
Passcode	Passcode	 – Neues Passwort vergeben 	34
Einheiten	Einheiten	– Einstellung der Maßeinheiten	34
Menue Setup			
Optionen	Optionen	 Konfiguration der Analogausgänge und RESET 	35
Uhr	Uhr	 Datum und Uhrzeit einstellen 	37
Manuell	Manuell	 Manuelle Bedienung der Ausgänge 	38
🚽 Uhr			
Menue Setup			
RS485	RS 485	 Konfiguration der seriellen Schnittstelle 	39
GSM	GSM	– Konfiguration von SMS- Meldungen	40
TCP IP	TCP IP	 Konfiguration der Ethernet-Schnittstelle 	41
← RS 485			
Manua Catur			
CDDS		Kanfingering das OOM Madama (Mahilfunk)	40
E-Mail	GPRS	- Konfiguration des GSM-Modems (Mobilitunk)	43
Datenl og	DatenLog	- Email Meloungen einstellen - Konfiguration des Datenspeichers (Datenlogger)	45 45
← E-Mai			
Menue Setup			
MODBUS	MODBUS	 Konfiguration der MODBUS RTU Schnittstelle 	46
Exit	Exit	– Menü verlassen	
← Exit			

7.1.1 Inhibitor

Im Menü "Inhibitor" konfigurieren Sie die Inhibitor-Dosierung im Zusammenhang mit der Absalzfunktion "Absalzen".

Inhibitor Menue Dosi = Wasserzaeh T = 00 h 02 m C = 0010 Exit

🚽 Frischwasser

Dosieren = WZ ppm

Impulsausgang 11-12, Relaisausgang 2-E-N und Wasserzähler (WZ1) "Frischwasser"

Die Inhibitor-Dosierung erfolgt proportional zur Frischwassernachspeisung, die durch den Wasserzähler (WM1) "Frischwasser" erfasst wird.

Anschluss einer Dosierpumpe an den Impulsausgang 11-12 mit folgender Parametrierung:

- ppm = gewünschte Inhibitor-Konzentration im Frischwasser
- ml/Hb = Volumen (ml) pro Dosierhub

- **Konzentration** = Konzentration des Inhibitor-Konzentrates in % Der *"MTOWER"* errechnet aus diesen Parametern die Anzahl der Impulse für den Impulsausgang 11-12.

Einstellungen:

- gewünschte Konzentration im Frischwasser: 0001 9999 ppm
- Dosierleistung für Impulsausgang 11-12: 00.01 99.99 ml/Hub
- Inhibitor-Konzentration: 0 100%

Anschluss einer Dosierpumpe an den Relaisausgang 2-E-N mit folgender Parametrierung:

- ppm = gewünschte Inhibitor-Konzentration im Frischwasser
- I/h = Dosierpumpen-Förderleistung in Liter pro Stunde

- **Konzentration** = Konzentration des Inhibitor-Konzentrates in % Der *"MTOWER"* errechnet aus diesen Parametern die Schaltzeit für das Relais 2 (Mindest-Anzugszeit 10 Sekunden).

Einstellungen:

- gewünschte Konzentration im Frischwasser: 0001 9999 ppm
- Dosierleistung für Relaisausgang 2-E-N: 1.0 999.0 l/h
- Inhibitor-Konzentration: 0 100%

Dosieren = Wasserzähler

Relaisausgang 2-E-N

und Wasserzähler (WM-IN) "Frischwasser"

Die Inhibitor-Dosierung wird nach der Zählung einer vorgegebenen Anzahl Impulse [C] des Wasserzählers (WM1) für die Dosierzeit [T] gestartet. Erreicht der Zähler die Vorgabe [C] erneut – während die Dosierung noch aktiv ist, wird der restlichen Aktivzeit die nächste Dosierzeit [T] hinzuaddiert.

Beispiel:

Dosierzeit [T] = 00h 02m, Impulszahl [C] = 10. Der Wasserzähler (WM1) gibt 6 Minuten lang alle 3 Sekunden einen Impuls:

360 Sekunden (6 Minuten) / 3 Sekunden/Impuls = 120 Impulse.

120 Impulse / 10 (Impulszahl) = 12

12 x 2 Minuten = <u>24 Minuten Dosierzeit [T]</u>.

Einstellungen:

- Dosierzeit [T]: 00h 00m 99h 59m
- Impulszahl [C]: 0 9999

Hinweise:

- Stellen Sie im Menü "Durchfluss den Wert "Kontaktzahl" auf "001.0" [L/P o. P/L]!
- Diese Funktion arbeitet <u>unabhängig</u> von der Absalzfunktion "Bleed"!

7.1.1 Inhibitor (Fortsetzung)

Inhibitor Menue		
Dosi =	Absalz	
Exit		
Dosieren und Absalzen		

Inhibitor Menue		
Dosi = %Absalz		
Prozent = 50		
Exit		

🖊 Absalzmenge

Inhibitor Menu		
Dosi =	%Zeit	
Ct = 00h 01 m % = 50		
Exit		
- Proz	ent von l	Zeit

Dosieren = Absalzen

Relaisausgang 2-E-N

Bei dieser Funktion ist die Inhibitor-Dosierzeit = Absalzzeit.

Beispiel:

Das Absalzventil öffnet nach Überschreiten des max. Grenzwertes für die Leitfähigkeit *"Sollwert"* (siehe Menü *"Absalzen"*) solange, bis der untere Wert = *"Sollwert"* – *"Hysterese"* unterschritten ist. <u>Parallel</u> dazu ist auch die Inhibitor-Dosierung aktiv.

Dosieren = %Absalzen

Relaisausgang 2-E-N

Bei dieser Funktion ist die Inhibitor-Dosierzeit prozentual zur Absalzzeit. Die Dosierung beginnt erst <u>nachdem</u> die Absalzung beendet ist.

Beispiel:

Die Absalzzeit betrug 10 Minuten -> die Inhibitordosierung ist <u>danach</u> für 5 Minuten (= 50% von 10 Minuten) aktiv.

Einstellungen:

- 0 – 99%

Dosieren = %Zeit

Relaisausgang 2-E-N

Bei dieser Funktion ist die Dosierzeit ein Prozentwert [%] in einem Zeitzyklus [Ct]. Der Zeitzyklus [Ct] besteht aus der AN-Zeit + der AUS-Zeit.

Beispiel:

Zeitzyklus [Ct] = 01h 00m, % = 25.

Ein Zyklus ist 1 Stunde = 60 Minuten. Die Inhibitordosierung ist für 15 Minuten an (= 25%) und dann für 45 Minuten aus. Danach ist sie wieder für 15 Minuten an usw.

Einstellungen:

- Zykluszeit [Ct]: 00h 00m – 99h 59m

- %: 0 - 100

Hinweis:

Diese Funktion arbeitet <u>unabhängig</u> von der Absalzfunktion "Absalzen"!

7.1.2 Biozid 1 + 2

Sehr häufig werden in Kühlturmsystemen chlor- und bromhaltige Biozide, quaternäre Ammoniumverbindungen und andere Desinfektionsmittel zur Bekämpfung von Algen und schleimbildenden Bakterien kombiniert miteinander eingesetzt. Teilweise müssen diese Biozide mit einer anderen Chemikalie *"aktiviert"* werden, um ihre volle Wirksamkeit zu erzielen. Aus diesem Grund verfügt das *"MTOWER"* über mehrere Ausgänge, die miteinander kombiniert werden können. In diesem Kapitel wird die Programmierung des Relaisausgangs *"Biozid* 1" beschrieben. Die Funktion des Ausgangs *"Biozid* 2" ist entsprechend identisch.

Menue Setup	
Inhibitor	
Biozid 1	
Biozid 2	
Biozid 1	

Biozid 1 Menue				
VAbs 🕨	Zeit	00 h 30 m		
VBio	00 h ()1 m		
STP	00 h ()1 m		
← Vorabsalzen				
Biozid 1 Menue				
STP	00 h 30 m			

SIF	00 11 30 1
WK 🕨	1234
Exit	

🖊 Woche

Biozid 1 Menue		
VAbs 🕨	μS	00 h 30 m
VBio	00 h (01 m
STP	00 h (01 m
∠ Zeit oder μS		
Biozid 1	Menue	
STP	00 h 3	30 m
WK 🕨	123	4
Exit		

↓ Woche

Dosierzyklus:

Ein Biozid-Dosierzyklus läuft in 4 Schritten ab:

- 1. VAbs Vorabsalzung
- 2. VBio Dosierung Bio-Dispergator
- 3. WK Wochenzeitschaltuhr für die Biozid-Dosierung
- **4.** STP Absalzsperre nach einer Biozid-Dosierung

1. VAbs – Vorabsalzung:

Relaisausgang 7-8-9

Mit der *"VAbs*-Funktion wird eine Absalzung <u>vor</u> der Dosierung eines Biozids ausgeführt. Die Vorabsalzung kann entweder zeitabhängig, oder in Abhängigkeit zur Leitfähigkeit aktiviert werden:

Zeitaktivierte Vorabsalzung (Zeit):

Mit der Einstellung "Zeit" wird die Vorabsalzung zeitgesteuert ausgelöst.

Beispiel:

Start Biozid-Dosierung im Feld "*WK*" (siehe nächste Seite) um (@) 08:00 Uhr. Zeit = 00h30m:

Die Vorabsalzung startet um 08:00 Uhr – 30 Minuten = 07:30 Uhr und ist nach 30 Minuten beendet.

Einstellung:

- VAbs Zeit: 00h 00m – 09h 59m

Leitwertaktivierte Vorabsalzung (µS):

Mit der Einstellung " μS " wird die Vorabsalzung leitfähigkeitsgesteuert ausgelöst. Dazu sind folgende Punkte zu beachten:

- Wählen Sie für die Leitfähigkeit einen Grenzwert, der <= dem "Sollwert" in Menü "Absalzen" ist.
- Die Vorabsalzung startet vor der Biozid-Dosierung. Die Zeit dafür stellen Sie im Menü "Absalzen" im Feld "Max. Zeit" ein.
- Die Vorabsalzung ist beendet, sobald der Leitwert "VAbs μS" "Hysterese" (im Menü "Absalzen)" erreicht ist. Die Biozid-Dosierung startet unmittelbar danach.

Beispiel:

- VAbs µS = 2500 µS
- Hysterese = 500 μ S/cm, Max. Zeit = 00h 30m
- (diese beiden Werte werden im Menü "Absalzen" eingestellt).
 - Start Biozid-Dosierung im Feld "WK" (siehe unten) @ 08:00 Uhr:

Die Vorabsalzung startet um 08:00 Uhr – 30 Minuten = 07:30 Uhr, wenn der Leitwert >= 2500 $\mu S/cm$ ist.

Die Biozid-Dosierung startet, sobald der Leitwert von $2500 - 500 = 2000 \,\mu$ S/cm unterschritten ist.

Einstellung:

VAbs µS: 0000 – 9999 µS/cm

7.1.2 Biozid 1 + 2 (Fortsetzung)

Biozid 1	Menue
VAbs	Zeit 00 h 30 m
VBio 🕨	00 h 10 m
STP	01 h 30 m
< WorBiozid	

Biozid 1	Menue
STP	01 h 00 m
WK ►	1234
Exit	
↓ Woch	е
Biozid 1	Menue
Mo1	Aus
Di1 🕨	An 00 10@08.00

Mi1	Aus
Jie 🏎	nstag setzen

Biozid 1	Menue
VBio	00 h 10 m
STP 🕨	01 h 30 m
WK	1234
Stop .	Absalzen

2. VBio – Dosierung Bio-Dispergator:

Transistorausgang 5-6 ab Version 01/2018 und Relaisausgang 6-E-N Mit der *"VBio"*-Funktion wird die Dosierung eines Bio-Dispergators <u>vor</u> der eigentlichen Dosierung eines Biozids ausgeführt.

Beispiel:

Start Biozid-Dosierung im Feld "WK" (siehe unten) @ 08:00 Uhr. Dosierdauer VBio = 00h10m:

Die Biozid-Aktivator-Dosierung startet um 08:00 Uhr – 10 Minuten = 07:50 Uhr und ist nach 10 Minuten beendet.

Danach startet die eigentliche Biozid-Dosierung (siehe Punkt "*WK"*).

Einstellung:

VBio Zeit: 00h 00m – 09h 59m

3. WK – Dosierung Biozid Wochenzeitschaltuhr:

Im "WK"-Eingabemenü setzen Sie die Dosierzeitpunkte und die Dosierdauer für das Biozid fest.

Sie können über 4 Wochen (WK 1 – 4) für jeden Wochentag einen individuellen Zeitpunkt und die Dosierdauer programmieren.

Einstellungen:

- Woche (WK): 1 4
- Dosierdauer: 00h 00m 99h 99m
- Dosierstart (@): 00:00 Uhr 23:59 Uhr

Wochentage	
Мо	Montag
Di	Dienstag
Mi	Mittwoch
Do	Donnerstag
Fr	Freitag
Sa	Samstag
So	Sonntag

4. STP – Absalzsperre:

Relaisausgang 07-08-09

Mit der *"STP"*-Funktion verriegeln Sie die Absalzung für einen einstellbaren Zeitraum <u>nach</u> der Biozid-Dosierung. Dadurch wird das Ablassen von evtl. noch aktivem Biozid in den Kanal vermieden.

Beispiel:

Start Biozid-Dosierung im Feld "*WK*" (siehe unten) @ 08:00 Uhr. STP = 01h30m:

Die Biozid-Dosierung startet um 08:00 Uhr und ist um 08:00 Uhr + 30 Minuten = 08:30 Uhr beendet. Danach ist der Absalz-Relaisausgang unabhängig vom aktuellen Leitwert für 1 Stunde und 30 Minuten (bis 10:00 Uhr) verriegelt.

Einstellung:

- STP: 00h 00m – 09h 59m

Weiter auf der nächsten Seite.

7.1.2 Biozid 1 + 2 (Fortsetzung)

Hinweis:

Berücksichtigen Sie, daß die Zeiten für die Vorabsalzung *"VAbs"* und für die Bio-Dispergator-Dosierung *"VBio"* vor den hier programmierten Biozid-Dosierzeiten liegen.

Beispiel für einen Dosierzyklus:

	Dosierzyklus	
Vorabsalzung VAbs	00h 30m	Beginn: 07:20 Uhr
Bio-Dispergator VBio	00h 10m	Beginn: 07:30 Uhr
Biozid (WK)	Di1 An 00 10 @08:00	Beginn: 08:00 Uhr
Absalzsperre STP	01h 30m	Beginn: 08:10 Uhr Ende: 09:40 Uhr
Dauer	02h 20m	

Hinweis:

Zum Deaktivieren (Ausschalten) einer Funktion setzen Sie entweder die Zeit auf "00h 00m", oder die Funktion auf "Aus".

7.1.3 Absalzen

Kühltürme arbeiten nach dem System der Verdunstungskühlung. D.h. es verdunstet permanent Wasser, das entsprechend mit sog. *"Frischwasser"* nachgespeist werden muss. Da die im Wasser gelösten Salze und Mineralien bei der Verdunstung aber nicht mit verdunsten, sondern sich im Kühlwasser anreichern, *"dickt"* das Kühlwasser immer mehr ein. Diesen Vorgang kann man durch die Messung der Leitfähigkeit des Kühlwassers überwachen. Irgendwann kommt es durch die *"Eindickung"* des Wassers (d.h. die Leitfähigkeit steigt an) zu einer Überschreitung der Löslichkeit dieser Mineralien und es treten sog. *"Ausfällungen"* auf, die sich auf den Wärmeübertragungsflächen, Kühlturmlamellen etc. ablagern und den Wärmeübergang mehr und mehr verschlechtern/verhindern. Aus diesem Grund muss ein Teil des Kühlwassers von Zeit zu Zeit durch die sog. *"Ab-salzung"* als Abwasser abgelassen und durch frisches Wasser ersetzt werden. Die Steuerung der Absalzung erfolgt mit Hilfe der Leitfähigkeitsmessung.

Absalzen Me	enue
Sollwert ►	03000 μS
SollwertVerz	z 02 m
Hysterese	- 500 μS
← Sollwert einstellen	

Absalzen Menue	
Sollwert	03000 μS
SollwertVerz ►	02 m
Hysterese	- 0500 μS
Sollwertverzoegerung	

Absalzen Menu	ie
SollwertVerz	02 m
Hysterese 🕨	- 0500 μS
Max. Zeit	02 h 30 m
Hysterese einstellen	

Sollwert:

Relaisausgang 7-8-9

Mit dem "Sollwert" legen Sie die max. zulässige Leitfähigkeit fest, ab der die Absalzung erfolgen soll.

Einstellbereich:

- Sollwert:

 $0000 - 9999 \,\mu$ S/cm (konduktiv messend) $00100 - 30000 \,\mu$ S/cm (induktiv messend)

Sollwertverzögerung:

Relaisausgang 07-08-09

Um zu vermeiden, dass die Absalzung bei einem schwankenden Messwert – insbesondere bei sehr niedrigen Leit- bzw. Sollwerten sofort ausgelöst wird, kann hier eine Verzögerungszeit eingestellt werden. Erst wenn der Sollwert während der gesamten Verzögerungszeit konstant überschritten wurde, erfolgt der Start einer Absalzung.

Hysterese (Regelbereich "–" = Minus):

Die sog. Schalthysterese ist der Regelbereich für die Leitfähigkeit. Bei Überschreitung des max. Sollwertes und Ablauf der Verzögerungszeitöffnet das Absalzventil. Bei Unterschreitung des Regelbereiches *"Sollwert – Hysterese"* schließt das Absalzventil wieder.

Einstellbereich:

Hysterese: 0000 – 999 µS/cm (konduktiv messend) 0000 – 9990 µS/cm (induktiv messend)

 Der Regelbereich "+" Plus ist f
ür eine Aufsalzung in der Prozesswasseraufbereitung vorgesehen.

Achtung!

7.1.3 Absalzen (Fortsetzung)

Absalzen Menue)
Hysterese	- 0500 μS
Max. Zeit 🛛 🕨	02 h 30 m
Man. Absalzen	- 0500 μS
← Max. Zeit setzen	

Max. Zeit:

Die "Max. Zeit" ist ein Count-Down, der bei jedem Absalzvorgang zu zählen beginnt. Innerhalb dieser Zeit muß der Leitwert "Sollwert" – "Hysterese" unterschritten und der Absalzvorgang damit beendet sein. Sollte der Absalzvorgang noch nicht beendet sein, erfolgt eine Alarmmeldung (siehe auch Menü "Alarm").

Einstellung:

- Max. Zeit: 00h 00m - 99h 59m

Hinweis:

Die Eingabe "Max. Zeit" hat auch Einfluss auf die leitwertaktivierte Vorabsalzung. Siehe Menü Biozid 1 + 2", Eingabefeld "VBio".

Absalzen Menue Max. Zeit Man. Absalzen ► Exit	02 h 30 m Aus
Hanuelles Ab	salzen
Absalzen Menue	
Max. Zeit	02 h 30 m
Man. Absalzen ►	An 05 m
Exit	

Manuelles Absalzen

Manuell Absalzen:

Relaisausgang 07-08-09

Mit dieser Funktion können Sie den Absalz-Relaisausgang für eine einstellbare Zeit manuell einschalten.

Der Ausgang bleibt aktiv, bis entweder die Zeit abgelaufen ist, oder dieses Untermenü vorzeitig verlassen wird.

Einstellung:

- Man. Absalzen: 00 - 99 Minuten [m]

7.1.4 Durchfluss – Wasserzähler konfigurieren

Wasserzaehler Menue		
WZ1 ges ►	0000000000	
WZ2 ges	000000000	
WZ1 Kkt.	001.0 L/P	
← Wasserzaehler 1		
Wasserzaehl	er Menue	

Zaehler zuruecksetzen

Nein

RST WZ 🕨

Exit

WZ1 ges:

Digitaleingänge Version bis 12/2017: 37-38-39 Digitaleingänge Version ab 01/2018: 42-43-44 Zählerstand für die Frischwassermenge.

WZ2 ges:

Digitaleingänge Version bis 12/2017: 37-45-46 Digitaleingänge Version ab 01/2018: 45-46-47 Zählerstand für die Absalzwassermenge.

WZ1 Kkt. + WZ2 Kkt.:

In diesem Feld passen Sie die Wasserzählereingänge an die angeschlossenen Kontaktwasserzähler an.

Einstellungen:

- Einstellbereich: 000.1 999.9
- Einheit: L/P = Liter pro Impuls, oder P/L = Impulse pro Liter

RST WZ:

Mit dieser Funktion können Sie beide Wasserzählerstände auf "O" zurücksetzen.

7.1.5 Sollwert mV – Dosierung eines oxidierenden Biozids

In diesem Kapitel wird die Konfiguration der Regelausgänge für den **Relaisausgang "D1 mV"** und den **Proportionalausgang "P1 mV"** zur Dosierung eines oxidierenden Biozids beschrieben.

Relais D1 mV – An/Aus Modus:

Relaisausgang 1-E-N <u>Funktion</u>:

Bei einer Unterschreitung der Regelhysterese zieht das Relais an. Sobald der Sollwert erreicht ist, fällt das Relais wieder ab.

In diesem Beispiel soll mit dem Relaisausgang Chlordioxid dosiert werden, bis der Sollwert => 650 mV erreicht ist.

Bei einem Wert <= 600 mV zieht das Relais an: *"AN"*. Oberhalb des Sollwertes fällt das Relais wieder ab: *"AUS"*.

Relais D1 mV – PWM Modus (Puls-Weiten-Modulation):

Relaisausgang 1-E-N

Funktion:

Das Relais arbeitet in Intervallen innerhalb eines Schaltzyklus.

Das Verhältnis der Schaltzykluszeit (100 Sekunden = 1 Zyklus für AN und AUS) wird durch eine zunehmende Abweichung des Messwertes vom eingestellten Sollwert proportional verändert.

Oberhalb des Sollwertes bleibt das Relais "AUS", wenn der Proportionalwert auf "00%" gestellt ist.

Unterhalb der Regelhysterese bleibt das Relais dauerhaft "AN", wenn der Proportionalwert auf "100%" gestellt ist.

In diesem Beispiel soll mit dem Relaisausgang Chlordioxid dosiert werden, bis der Sollwert => 650 mV erreicht ist.

Bei einem Wert =< 600 mV bleibt das Relais ständig "AN".

Bei einem Wert von z.B. 625 mV ist das Relais für 50 Sekunden "*AN"* und dann für 50 Sekunden "*AUS"*, dann wieder für 50 Sekunden "*AN"* usw.

Relais D1 mV – Ausschalten:

Relaisausgang 1-E-N Mit *"Ausschalten"* ist der Relaisausgang deaktiviert.

mV-Sollwert

Ausschalten

🚽 setzen

Achtung!

Stellen Sie den **Sollwert** <u>immer</u> auf "0%"! Ansonsten besteht die Gefahr einer Überdosierung, da die Dosierpumpe bei Erreichen des Sollwertes mit einem eingestellten Proportionalwert >0% entsprechend weiter dosieren würde.

7.1.5 Sollwert mV (Fortsetzung)

en

mV-Sollwert
Relais D1
Proportional P1
Betriebsmodus
Proportional einstell

mVSollwert An 600 mV = 180 Pm 650 mV = 000 Pm ✔ An- oder Ausschalten

Proportional P1 mV:

Impulsausgang 9-10

Funktion:

Bei einer Unterschreitung des Sollwertes beginnt der Impulsausgang zu takten. Die Impulsfrequenz wird durch den Bereich zwischen dem Sollwert und der max. zulässigen Sollwertabweichung bestimmt.

Bei Erreichen/Unterschreitung der max. zulässigen Sollwertabweichung taktet der Impulsausgang mit der max. gewählten Impulsfrequenz.

Sobald der Sollwert erreicht ist, stoppt der Impulsausgang.

In diesem Beispiel fördert die Dosierpumpe bei einem Messwert von <= 600 mV mit einer Dosierfrequenz von 180 Impulsen/Minute. Je näher der Messwert durch Zugabe von Biozid dem **Sollwert = 650 mV** kommt, desto geringer wird die Dosierleistung (z.B. bei 625 mV= 90 P/m).

Bei einem Messwert von <= mV 650 stoppt die Dosierpumpe.

Der Proportionalbereich ist also 650 mV – 600 mV = 50 mV.

Proportional P1 mV – Ausschalten:

Impulsausgang 9-10 Mit "Ausschalten" ist der Impulsausgang deaktiviert.

mV-Sollwert

Ausschalten

🔶 setzen

mV-Sollwert Proportional P1 Betriebsmodus

Exit

← Betriebsmodus einstel

mV-Sollwert

Timer Biozid 1

🔶 einstellen

Betriebsmodus:

Die Regelung für den Redox-Wert kann "Sollwert" oder "Zeitgesteuert" erfolgen.

Für eine zeitgesteuerte Dosierung stellen Sie in dem Menü "Timer Biozid 1" ein. Der mV-Ausgang wird nun mit dem im Menü "Biozid 1" einstellten Zeiten angesteuert. Sowohl der digitale als auch der Relaisausgang können in diesem Betriebsmodus genutzt werden. Eine konstante Dosierung kann ebenfalls eingestellt werden. Sehen Sie dazu Kapitel "7.1.2 Biozid 1 + 2".

7.1.6 Alarm

In diesem Menü können Sie verschiedene Alarmmeldungen und Zustände konfigurieren.

Alarm Menue	
LOC	Aus
HIC 🕨	Aus
LmV	Aus
Leitwert hoch	

LOC – Leitwert zu niedrig:

Mit "LOC" können Sie eine Alarmmeldung für eine zu niedrige Leitfähigkeit des Kühlwassers generieren.

Diese Funktion kann z.B. vermeiden, daß aufgrund eines klemmenden Absalzventils unnötig Kühlwasser in den Kanal abgelassen und deshalb ständig Frischwasser nachgespeist wird.

Einstellungen:

- Aus: Funktion deaktiviert
- Abs: (= Absolut-Wert): 0010 30990 µS/cm*
- Trk: (= Track-Wert): 0010 30990 µS/cm*

Beispiel für Absolut-Wert:

"*Abs*" = 1800 μS/cm. Ergebnis: Alarm bei Leitwert < 1800 μS/cm.

Beispiel für Track-Wert:

"Sollwert" = 3000 μ S (siehe Menü "Absalzen") und "LOC Trk" = 1200 μ S/cm. Ergebnis: Alarm bei Leitwert < 1800 μ S/cm.

HIC – Leitwert zu hoch:

Mit "*HIC*" können Sie eine Alarmmeldung für eine zu hohe Leitfähigkeit des Kühlwassers generieren.

Diese Funktion kann z.B. vermeiden, daß aufgrund eines klemmenden Absalzventils <u>kein</u> Kühlwasser mehr in den Kanal abgelassen und deshalb kein Frischwasser nachgespeist wird.

Einstellungen:

- Aus: Funktion deaktiviert
- Abs: (= Absolut-Wert): 0010 30990 μS/cm*
- Trk: (= Track-Wert): 0010 30990 µS/cm*

Beispiel für Absolut-Wert: "Abs" = 4200 μ S/cm.

Ergebnis: Alarm bei Leitwert > 4200 µS/cm.

<u>Beispiel für Track-Wert</u>: *"Sollwert*" = 3000 μ S (siehe Menü *"Absalzen*) und *"HIC Trk*" = 1200 μ S/cm. Ergebnis: Alarm bei Leitwert > 4200 μ S/cm.

Die gleiche Funktionalität wie oben beschrieben, ist für folgende Parameter ebenfalls verfügbar:

LmV – mV-Wert zu niedrig

HmV - mV-Wert zu hoch

*Hinweis:

Bei diesen Alarmmeldungen wird das Relais 10-11-12 aktiviert und <u>alle</u> anderen Ausgänge werden ausgeschaltet.

7.1.6 Alarm (Fortsetzung)

Alarm Menue	
CLS	Stop NC
ZAB 🕨	Stop
NFW	Stop Al Aus = An
← Zeit Absalzung	

CLS – Niveau-Alarm Chemikalienbehälter:

Mit "*CLS*" konfigurieren Sie die Reaktion auf einen leeren Chemikalienbehälter, sowie die Schaltwirkrichtung der Niveauschalter.

Einstellungen:

- Stop:

Bei einem leeren Chemikalienbehälter erfolgt eine Alarmmeldung und das zugehörige Ausgangsrelais, bzw. der Impulsausgang wird ausgeschaltet – d.h. die angeschlossene Dosierpumpe bleibt stehen.

- Nein: Funktion deaktiviert.
- NO / NC:

Mit dieser Funktion wird die Schaltwirkrichtung für die Niveauschalter der Leermeldeeingänge eingestellt.

NO = N.O. = Normal Open = Schließerkontakt

NC = N.C. = Normal Closed = Öffnerkontakt.

ZAB – Max. Zeit Absalzung:

Mit *"ZAB"* konfigurieren Sie die Reaktion auf eine Überschreitung der max. zulässigen Absalzzeit *"Max. Zeit"*.

Siehe auch Kapitel 7.1.4 "Absalzen".

Einstellungen:

- Stop:

Bei Überschreitung der max. zulässigen Absalzzeit schließt das Absalzventil und das Alarmrelais zieht an.

- Nein: Funktion deaktiviert.

NFW – Durchflussalarm:

Hier konfigurieren Sie die Durchflussüberwachung 34-35-36. <u>Einstellungen</u>:

- Stop: Bei mangelndem Durchfluss erfolgt eine Alarmmeldung und alle Regelausgänge werden abgeschaltet.
- Nein: Bei mangelndem Durchfluss erfolgt eine Alarmmeldung. Die Regelausgänge bleiben aber weiterhin aktiv.
- AI Aus:
- = An: Das Alarmrelais (10-11-12) zieht bei einem Durchflussalarm an.
- **= Aus:** Das Alarmrelais zieht nicht an.

KF – Konzentration Faktor:

Mit *"KF"* können Sie einen max. Konzentrationsfaktor = Verhältnis Frischwasser-Nachspeisemenge zur Absalzmenge vorgeben, bei dessen Überschreitung ein Alarm generiert wird.

Einstellungen:

- An: Faktor-Überprüfung aktiv.
- Aus: Faktor-Überprüfung deaktiviert.
- Faktor 1.0 9.9
- Toleranz 0 10%
- Alarm-Verzögerungszeit 0 60 Minuten [m]

Alarm Menue	
WZ2	Stop 0:00
KF 🕨	An 1.2 0.5% 02 m
Exit	
🖌 Konz	centration Faktor

7.1.7 Passcode

In diesem Menü können Sie den Zugangscode für das "Setup" - Menü einstellen bzw. ändern. Ab Werk ist der Wert "0 0 0 0" (Default).

Hinweis:

Dieser "Passcode" ist nur dem "Setup" - Menü zugeordnet!

7.1.8 Einheiten

Stellen Sie in diesem Menü die gewünschten Maßeinheiten ein.

Einheiten Menue	
Einheiten	IS
Volumen	Liter
Temperatur	Celsius
← Volumen	

Einheiten:

In diesem Feld können Sie zwischen europäischen und amerikanischen Maßeinheiten wählen.

Je nachdem welche Einheit Sie wählen, stellen sich die passenden Werte gemäß der nachfolgenden Tabelle selbstständig ein.

Einstellungen:

Europa Standard	Amerika Standard
IS	US
Datum (dd/mm/yy)	Datum (mm/dd/yy)
Zeit 24h	Zeit 12h (AM/PM)
Temperatur °Celsius	Temperatur °Fahrenheit
Volumen: Liter	Volumen: Gallonen
Messeinheit: µS	Messeinheit: µS

Einheiten Menue	
Datum	dd/mm/yy
Zeit 🕨	13:00
Messeinheit µS	
✓ Volumen	

Messeinheit:

In diesem Feld können Sie für die Leitfähigkeitsmessung zwischen der Maßeinheit " μ S" und "ppm" auswählen.

7.1.9 Optionen

Konfigurieren Sie in diesem Menü die Grundeinstellungen des "MTOWER".

Menue Optionen Tau Tempkoeff. Startverz.	00 0.0 % 00 m
- Temperaturk	oeffizient
Menue Optionen Durchfluss N.C. Stromausg. ► 4/20 mA CD mA max 0000 µS	
L Stromousgon	0

Tau:

In diesem Feld können Sie bei Bedarf die Messwertanzeigen stabilisieren, wenn sie zu *"unruhig"* sind.

Einstellung:

- Tau: 00 = schnell -> 30 = träge.

Temperatur Koeffizient:

Mehr Informationen zur Verwendung des Temperatur-Koeffizienten finden Sie in Kapitel 7.2.1 "Menu Elektroden – Kalibrieren μ S – TE und CA"".

Einstellung:

-0.0% (= deaktiviert) -5.0% (Default = 2,1%).

Startverzögerung:

Beim Einschalten der Spannungsversorgung, oder nach dem Wiederanlauf nach einer Störung benötigen die Messungen einen Augenblick um sich zu stabilisieren. Um in dieser Zeit das evtl. unkontrollierte Schalten des Absalzventils oder der Dosierpumpen zu vermeiden, kann in diesem Feld eine sog. Startverzögerung eingestellt werden. Während der Startverzögerungszeit bleiben alle Ausgänge des Gerätes deaktiviert.

Einstellung:

- 00 – 99 Minuten [m].

Durchflussüberwachung:

Digitaleingang 34-35-36

In diesem Feld konfigurieren Sie die Schaltrichtung der Durchflussüberwachung.

Einstellung:

Einstellung	Wirkung
N.C.	Schließer
N.O.	Öffner
Aus	Funktion deaktiviert

Achtung!

Verwenden Sie auf jeden Fall eine Durchflussüberwachung zur Sicherstellung einer kontinuierlichen Messung, um die Gefahr einer Chemikalienüberdosierung zu vermindern!

Stromausgänge:

Klemmen 13-17

In diesem Feld konfigurieren Sie die Spreizung der Stromausgänge

```
Einstellung:
```

- 4/20 mA
- 0/20 mA

7.1.9 Optionen (Fortsetzung)

CD mA max – Max. Leitwert für 20 mA:

Stromausgang 13-14

In diesem Feld geben Sie den max. Leitwert bei 20 mA vor. Einstellung:

- 00000 – 30000 µS/cm (Default = 00000 = deaktiviert).

CD mA min – Min. Leitwert für 4 oder 0 mA:

Stromausgang 13-14

In diesem Feld geben Sie den min. Leitwert bei 4 oder 0 mA vor – je nachdem welche Einstellung Sie in Feld *"Out Current"* gewählt haben.

Einstellung:

- 00000 – 30000 µS/cm (Default = 00000).

Die gleiche Funktionalität wie oben beschrieben, ist für folgende Parameter ebenfalls verfügbar:

T mA max	Stromausgang 13-15	(Default = 00.00 °C)
T mA min		(Default = 00.00 °C)
mV mA max	Stromausgang 13-16	(Default = 00.00 mV)
mV mA min		(Default = 00.00 mV)

Wochenzahl – Anzahl Wochen für Biozid-Zeitschaltuhr:

In diesem Feld geben Sie vor, für wie viele Wochen die Zeitschaltuhr für die Biozid-Dosierung freigeschaltet ist. Sehen Sie dazu auch das Menü *"Biozid* 1 + 2".

Einstellung:

- 1 – 4 Wochen.

Fact – Default

In diesem Feld können Sie die Einstellungen und Konfigurationen des *"MTOWER"* auf die Werkseinstellungen zurücksetzen.

Einstellungen:

- Nein: Keine Rücksetzung auf Werkseinstellungen
- Ja: Rücksetzung auf Werkseinstellungen

Hinweis:

- Alle "Passcode" werden auf "0 0 0 0" gesetzt.
- Die Werte der Zeitschaltuhr in den Menüs "Biozid 1 + 2" werden <u>nicht</u> zurückgesetzt!

Alarmausgang

In diesem Feld stellen Sie die Schaltrichtung des Alarmrelais ein. Einstellungen:

- N.O.: Alarm = Relais zieht an
- N.C.: Alarm = Relais fällt ab

7.1.9 Optionen (Fortsetzung)

IWZ – Konfiguration der Wasserzählereingänge

In diesem Feld ordnen Sie die Inhibitor-Dosierung einem (oder beiden) Wasserzählereingang zu

Einstellung:

Einstellung	Klemmen
WZ1	W.M. 1
WZ2	W.M. 2
WZ1+WZ2	W.M. 1 + W.M. 2

Wenn Alarm – Funktion der Stromausgänge

Im Falle eines Alarms.

Einstellungen:

- mA Aus: Die Stromausgänge gehen auf 0.

- mA An: Die Stromausgänge bleiben weiter aktiv.

7.1.10 Uhr

Menue Uhr	
Datum	23 – 11 – 12
Uhrz.	08 : 15 : 02
Exit	
← Uhrzeit	einstellen

Dieses Menü dient zur Einstellung der internen Uhr. Das Datumsformat stellen Sie im Menü *"Einheiten"* ein.

7.1.11 Manuell

Manuell Menue	
Aus Manager	Auto
Absalzung 🕨 🕨	An 02 m
Inhibitor	Aus
← Absalzung	

Ausgangsmanager

In diesem Menü können Sie einzelne oder auch mehrere Ausgänge gleichzeitig manuell betätigen. Dazu müssen Sie zuerst den Ausgangsmanager aktivieren.

Einstellungen:

- Auto: Das Gerät ist im automatischen Regelmodus
- Manuell: Der manuelle Betriebsmodus ist aktiv
- Stop: Alle Relais- und Impulsausgänge sind deaktiviert.

Folgende Regelausgänge können manuell geschaltet werden:

Ausgang	Relais- /Impulsausgang	
Absalzung	7-8-9	
D1 Inhibitor	2-E-N	
Bio-Dispergator 1	5-E-N	
Bio-Dispergator 2	6-E-N	
D1 Biozid 1	3-E-N/1-2	
Biozid 2	4-E-N/3-4	
Alarm	10-11-12	
D1 mV	1-E-N	
P1 mV	9 – 10	
Ausg. mA 1 (Leitwert)	13 - 14	
Ausg. mA 2 (Temp)	13 - 15	
Ausg. mA 3 (mV)	13 – 16	

* Die Stromausgänge werden auf 20 mA gestellt.

Manuelle Aktivierung der Ausgänge:

Stellen Sie zuerst den "Aus Manager" auf "Manuell".

Gehen Sie dann auf den Ausgang den Sie bestätigen möchten.

- 1. Drücken = "Aus (invers)"
- 2. Drücken = "<u>Aus</u>"
- 3. Drücken = "An 00 m"

Drehen = "An (invers)"

Drehen auf "00 m"

Drücken = "<u>00</u> m"

und Vorgabe eines Count-Down von 0 – 99 Minuten.

- Sobald Sie zum Betriebsanzeigedisplay zur
 ückgekehrt sind startet der eingestellte Count-Down und das/die Ausgang/Ausg
 änge werden aktiviert.
- Sobald der eingestellte Count-Down abgelaufen ist, stellen sich alle Relais wieder in den ursprünglichen Schaltzustand vor der manuellen Betätigung zurück und der automatische Betriebsmodus "Aus Manager = Auto" ist wieder aktiv.

7.1.12 RS485 Schnittstelle

Das Gerät ist mit einer seriellen RS485 Schnittstelle ausgestattet. Die Schnittstelle kann zur Datenübertragung, zur Einbindung in ein lokales Netzwerk und für die Fernbedienung des Gerätes – das sog. *"Remote Control"* – verwendet werden. Wenn mehrere Geräte in einem lokalen RS485-Netzwerk zusammengeschlossen sind, bzw. die Option *"GPRS-Modul"*, oder *"ETHERNET-Modul"* installiert ist, muss jedem Gerät in diesem Netzwerk eine individuelle Identifikationsnummer (die sog. ID-Nummer) zugeordnet werden.

Drücken Sie im Hauptmenü den Encoder auf der Position "RS485", um das Untermenü zu öffnen.

RS 485 Menue

ID Check

ID Name

RS485 ID-Nummer

RS 485 Menue

01 Check

RS485 ID-Nummer

ID Check

Sind mehrere Geräte zu einem Netzwerk zusammengeschlossen, dann können Sie mit dieser Funktion prüfen, ob eine bestimmte ID-Nummer bereits vergeben ist.

Geben Sie die gewünschte ID-Nummer ein und aktivieren Sie die Suche durch Drücken des Encoders auf dem Feld *"Check"*.

Wird die eingegebene ID-Nummer vom Gerät im Netzwerk nicht gefunden, erscheint die Meldung "*Check Ok"* auf dem Display.

Ist die Nummer schon vergeben, erscheint die Fehlermeldung *"Check failed"* auf dem Display. Sie können die Suche dann mit einer anderen Nummer wiederholen.

Einstellbereich: 01....99.

Hinweis:

Um die Datenaustauschgeschwindigkeit zu optimieren empfiehlt es sich, die ID-Nummern in einem Netzwerk fortlaufend (01...02...03 etc.) zu vergeben!

RS 485 Menue ID Check

ID Name

Exit

RS485 Bezeichnung

RS 485 Menue Aussenschwimmbecken Mustermann

RS485 Bezeichnung

ID Name

In diesem Feld haben Sie die Möglichkeit, dem Gerät einen Namen, bzw. Bezeichnung zu geben. Dadurch lässt es sich beim Zugriff mit dem *"ERMES-Server"* leichter identifizieren.

Der Name kann max. 28 Zeichen lang sein und sowohl Groß- und Kleinbuchstaben, als auch Zahlen und Sonderzeichen enthalten. Umlaute sind nicht einstellbar.

"Scrollen" Sie den Cursor bis zum Ende des Eingabefeldes, um in das Untermenü zurückzukehren.

7.1.13 GSM – Konfiguration von SMS-Nachrichten

Ist das Gerät mit der Option "*GSM*" Mobilfunkmodem ausgestattet, dann können Sie in diesem Untermenü bis zu 3 Telefonnummern programmieren, zu denen Fehler- bzw. Alarmmeldungen als SMS-Nachricht abgesetzt werden.

Menue GSM SMS1 SMS 2 SMS 3 SMS 2 eingeben Menue GSM 00497409123456--SMS 1 eingeben **Menue GSM** SMS 3 Meldung Aktiv Exit -Set Meldung Aktiv **Menue GSM** Durchfluss An Niv. Bio 1 An Niv. Bio 2 An

← Niveau Biozid 1

Menue GSM	
Durchfluss	An
Niv. Bio 1	An
Niv. Bio 2	An
Δn/Δus (2 x	druecken)

Drücken Sie im Hauptmenü den Encoder auf der Position *"GSM"*, um das Untermenü zu öffnen.

SMS 1, SMS 2 und SMS 3:

Geben Sie bis zu 3 verschiedene Telefonnummern mit den zugehörigen Ländervorwahlnummern ein.

"Scrollen" Sie den Cursor bis zum Ende des Eingabefeldes, um in das Untermenü zurückzukehren.

Meldung Aktiv – SMS - Meldungen aktivieren

In diesem Untermenü geben Sie vor, welche Meldungen im Falle eines aufgetretenen Fehlers als SMS abgesetzt werden sollen:

An = Meldung aktiv (wird bei Aufkommen gesendet)

Aus = Meldung passiv (wird bei Aufkommen nicht gesendet)

Meldung	Bedeutung	
Durchfluss	Kein Durchfluss	
Niv. Bio1	Leermelder Biozid 1	
Niv. Bio2	Leermelder Biozid 2	
Niv. VorBio1	Leermelder Bio-Dispergator 1	
Niv. VorBio2	Leermelder Bio-Dispergator 2	
Niv. Inhib	Leermelder Inhibitor	
CD hoch	Leitwert zu hoch	
CD niedrig	Leitwert zu niedrig	
mV hoch	mV-Wert zu hoch	
mV niedrig	mV-Wert zu niedrig	
K. Fak	Konzentrationsfaktor zu hoch	

Hinweis:

Die Aktivierung *"An"* oder Deaktivierung *"Aus"* einer SMS-Nachricht erfolgt hier nicht durch Drehen und Drücken, sondern <u>nur durch Drücken</u> des Encoders in dem jeweiligen Feld!

1. Drücken = "<u>Aus</u>"

2. Drücken = <u>"An</u>"

Drehen

7.1.14 TCP IP – Konfiguration der ETHERNET – Schnittstelle

Ist das Gerät mit der Option "ETHERNET-Modul" ausgestattet, dann können Sie es in ein LAN-Netzwerk mit Internetverbindung einbinden und webbasiert über den "ERMES-Sever" fernbedienen (Remote-Control).

Hinweis:

 Zur Einbindung des Gerätes in ein LAN – Netzwerk benötigen Sie eine statische, oder dynamische IP-Adresse und ein CAT 5 – Anschlusskabel. Eine gültige IP-Adresse, sowie gültige Internet-Zugangsdaten erhalten Sie von Ihrem Netzwerk-Administrator.

Drücken Sie im Hauptmenü den Encoder auf der Position *"TCP IP"*, um das Untermenü zu öffnen.

TCP IP Menue	
IP Modus	
IP Adresse	
Subnet Maske	
IP Adresse	

- Stellen Sie den "IP Modus" zunächst auf "Dynamisch". Gehen Sie dann zum Menüpunkt "Sichern" und starten Sie die automatische Konfiguration mit "JA". Das Gerät sucht nun selbstständig nach einer freien IP-Adresse und konfiguriert sich selbst.
- Schlägt die dynamische Konfiguration fehl (Speicherfehler), dann gehen Sie erneut in den *"IP Modus"* und stellen Sie den Wert auf *"Statisch"*. Gehen Sie danach in die einzelnen Untermenüs und geben Sie die erforderlichen Daten manuell ein.
- Gehen Sie abschließend auf das Feld "Sichern" und drücken Sie den Encoder. Sie werden dann in einer zweiten Anzeige gefragt, ob Sie die Daten tatsächlich speichern, oder das Untermenü ohne Speicherung verlassen möchten.
- Bestätigen Sie "Sichern" mit "JA", dann stellt das Gerät eine Verbindung zum LAN-Netzwerk her.

• Bei einem erfolgreichen Verbindungsaufbau erscheint die Meldung "OK" auf dem Display und Sie können das Untermenü mit "Exit" verlassen.

Schlägt der Verbindungsaufbau fehl, dann können Sie mit "Nochmal" einen erneuten Versuch starten, oder ins Untermenü zurückkehren, um die gemachten Eingaben zu überprüfen.

7.1.14 TCP IP (Fortsetzung)

LAN – Symbol

Erscheint oben auf dem Hauptdisplay.

Das "Computer" - Symbol zeigt an, dass ein ETHERNET – Modul eingebaut/angeschlossen ist.

	Ľ]
H		

Der *"MTOWER"* ist mit einem LAN –Netzwerk, oder einem Router verbunden. Im Hauptdisplay wird die Verbindung durch das *"zwei Computer"* - Symbol angezeigt. Sie können nun webbasiert über den *"ERMES-Server"* mit einem PC, SmartmVone, oder Tablet auf das Gerät zugreifen.

Dieses Symbol zeigt an, dass die Verbindung zwischen dem "MTOWER" und dem LAN - Netzwerk unterbrochen ist (z.B. weil das LAN - Kabel abgezogen, oder der Router ausgeschaltet ist).

Hinweis:

Weitere Informationen zur Einbindung des Gerätes in ein LAN - Netzwerk finden Sie in der Bedienungsanleitung "ETHERNET Modul".

Hinweis:

Gehen Sie zur Anmeldung und Fernbedienung (Remote Control) des Gerätes übers Internet auf die Webseite <u>www.ermes-server.com</u>.

7.1.15 GPRS – Konfiguration des GPRS - Mobilfunkmodems

Ist das Gerät mit der Option "GPRS - Modul" ausgestattet, oder ist ein externes GPRS-Modem Typ "BT CEL" bzw. "L CEL" an die RS485-Schnittstelle angeschlossen, dann können Sie das Gerät in diesem Untermenü für eine Fernbedienung (Remote-Control) über ein Mobilfunknetz vorbereiten. Die Fernbedienung und der Datenaustausch erfolgt dann mit einem beliebigen Webbrowser über den "ERMES-Server".

Achtung!

- Prüfen Sie zuerst mit einem Mobiltelefon die Stärke des Verbindungssignals an dem vorgesehenen Montageplatz der Modemantenne.
- Achten Sie bei der Verlegung auf die max. Länge des Antennenkabels.
- Das Antennenkabel darf weder geknickt, noch eingequetscht werden (z.B. in Tür- oder Fensterrahmen).
- Achten Sie darauf, dass die SIM-Karte richtig in das Modem eingesetzt und freigeschaltet ist.
 Die PIN Funktion auf der SIM-Karte muss deaktiviert sein!

Drücken Sie im Hauptmenü den Encoder auf der Position *"GPRS"*, um das Untermenü zu öffnen.

 Geben Sie im Display "APN" die APN-Nr. des SIM-Karten Providers ein. Sollte die APN-Nummer in den Unterlagen der SIM-Karte nicht enthalten sein, dann finden Sie die Informationen auf der Website des SIM-Karten Providers (bei der Deutschen Telekom z.B. "internet.t-d1.de").

• Gehen Sie dann in das Untermenü "Tel.-Nr.".

In diesem Untermenü finden Sie die 6-stellige *"spezifische Gerätenummer"* des Modems. Diese Nummer benötigen Sie zur Anmeldung auf dem ERMES -Server (www.ermes-server.com) und zur Fernbedienung des daran angeschlossenen Controllers.

GPRS Menue		GPRS Menue
Telefonnummer	\Box	552629
Sichern		
- Telefonnummer		- Telefonnummer

Mobilfunk – Symbol

Oben auf dem Hauptdisplay.

Das "Antenne" - Symbol zeigt an, dass ein Modem eingebaut/angeschlossen ist.

Yull

Das Balkendiagramm zeigt Ihnen genau wie bei einem Mobilfunktelefon die Netzabdeckung an. Sie können webbasiert über den ERMES-Server mit einem PC, einem Smartphone, oder einem Tablet auf das Gerät zugreifen.

7.1.16 Email (Konfiguration von Email – Nachrichten)

Ist das Gerät mit der Option *"GPRS - Modul"* ausgestattet, oder ist ein externes GPRS-Modem Typ *"BT CEL"* bzw. *"L CEL"* an die RS485-Schnittstelle angeschlossen, dann können Sie in diesem Untermenü zwei E-Mail-Adressen vorgeben, zu denen Fehler- bzw. Alarmmeldungen abgesetzt werden können.

Hinweis:

Die Fehler- und Alarmmeldungen werden im Menü "GSM" aktiviert.

Drücken Sie im Hauptmenü den Encoder auf der Position *"E-Mail"*, um das Untermenü zu öffnen.

Email Menue	
Email 1	
Email 2	
Exit	
Email 2 eing	eben
Email Menue info@musterma	ann.de

Email 1 und Email 2: Geben Sie bis zu 2 verschiedene E-Mail-Adressen ein.

"Scrollen" Sie den Cursor bis zum Ende des Eingabefeldes, um in das Untermenü zurückzukehren.

E-Mail – Symbol

Erscheint auf dem Hauptdisplay, wenn das Gerät eine E-Mail abgesetzt hat.

7.1.17 DatenLog – Konfiguration des Datenspeichers (Datenlogger)

Das Gerät verfügt über einen internen Datenspeicher, dem sog. "Datenlogger".

In diesem Speicher werden die Messwerte, Alarmmeldungen und wichtige Ereignisse mit einem Zeitstempel abgespeichert. Den Speicherinhalt können Sie sich dann jederzeit auf der Statusebene "Log oeffnen" ansehen, oder – je nach installierter Option – entweder auf einen USB-Stick auslesen, oder direkt online mit der "*ER-MES*" – Kommunikationssoftware auf einem PC visualisieren. In diesem Untermenü aktivieren Sie den Datenlogger und geben das Speicherintervall vor.

Log Menue		
Aktiv	Ein	
Zeit 🕨	00:00	
Alle	00 h 30 m	
Log-Zeit einstellen		

Aktiv – Datalogger aktivieren/deaktivieren

- Ein = Aktiviert
- Aus = Deaktiviert

Zeit – Speicheruhrzeit

In diesem Feld können Sie eine feste Speicheruhrzeit vorgeben, zu der die Daten jeden Tag abgespeichert werden sollen.

Beispiel:

Sie stellen Zeit = 08:00 Uhr ein.

Ergebnis:

Jeden Tag um 8:00 Uhr werden die Messwerte gespeichert.

Einstellbereich: 00:00 - 23:59 Uhr

Alle – Speicherintervall

In diesem Feld stellen Sie ein Zeitintervall für das Datenlogging ein. Das Intervall ist sofort aktiv, wenn dieses Untermenü mit *"Sichern = Ja"* verlassen wird.

Beispiel:

Sie stellen Alle = 00 h 30 m ein.

Ergebnis:

Die Daten werden alle 30 Minuten gespeichert. Einstellbereich: 00:00 – 23:59 [hh:mm]

Hinweis:

- Mit "00 h 00 m" ist das Datenlogging deaktiviert, auch wenn die Funktion "Aktiv" auf "Ein" gesetzt ist.
- Sind ein Speicherintervall <u>und</u> eine Speicheruhrzeit programmiert, werden die Daten in den Intervallen <u>und</u> zusätzlich einmal zur Speicheruhrzeit gespeichert.

Bericht – Email Sendeintervall einstellen

In diesem Feld stellen Sie ein Zeitintervall für das Versenden des Datenlogs per Email ein. Folgende Intervalle können eingestellt werden:

- Stündlich, Täglich, Wöchentlich, Monatlich.
- Mit "Aus" ist die Funktion deaktiviert.

Die Logdaten werden als Datei im CSV-Format gesendet.

Ausgabe

- Ja Der Status der Ausgänge soll mit gesendet werden.
- Nein Der Status der Ausgänge soll nicht mit gesendet werden.

Log Menue Bericht Aus Ausgabe Nein Exit

← Ausgabe einstellen

7.1.18 MODBUS – Konfiguration der MODBUS RTU - Schnittstelle

Ist das Gerät mit der Option "MODBUS" ausgestattet, dann können Sie es als sogenannten "Slave" in ein übergeordnetes MODBUS RTU Prozessleitsystem, oder an eine beliebige Speicherprogrammierbare Steuerung (SPS) mit MODBUS RTU Schnittstelle anschließen.

38400

OK Exit

0000

Menue MODBUS

Baudrate:

ID MODBUS

Drücken Sie im Hauptmenü den Encoder auf der Position "MODBUS", um das Untermenü zu öffnen.

Baudrate

Stellen Sie die Datenübertragungsrate des MODBUS-Systems ein. Folgende Baudraten sind einstellbar:

- 9600
- 19200
- 38400 (Default)
- 115200

ID MODBUS

Geben Sie die gewünschte ID-Nummer ein und aktivieren Sie die Suche durch Drücken des Encoders auf dem Feld "*OK*".

Wird die eingegebene ID-Nummer vom Gerät im Netzwerk nicht gefunden, erscheint die Meldung "*Check Ok"* auf dem Display.

Ist die Nummer schon vergeben, oder ist das Gerät noch nicht an einen MODBUS angeschlossen, erscheint die Fehlermeldung *"Error"* auf dem Display. Sie können die Suche dann mit einer anderen Nummer wiederholen.

Einstellbereich: 01....999.

Verlassen Sie das Untermenü mit "Exit".

7.2 Menü Elektroden

Im Menü "*Elektroden*" nehmen Sie die Kalibrierung der angeschlossenen Messzellen und Sensoren vor.

Öffnen Sie im Hauptmenü das Feld *"Elektroden"* und geben Sie den Passcode ein. Die Werkseinstellung ist *"0 0 0 0"*.

Hinweis:

Jedes Untermenü ist durch einen eigenen "*Passcode"* gesichert. Bei Auslieferung oder nach einem RESET ist der Passcode "0 0 0 0".

Menue Elektroden	Beschreibung		Seite:
Kalibrieren µS	Kalibrieren µS	 Kalibrierung der Leitfähigkeitsmesszelle 	48
Kalibrieren mV	Kalibrieren mV	 Kalibrierung der mV-Elektrode 	51
Kalibrieren Temp	Kalibrieren Temp	 Kalibrierung der Temperaturmessung 	52
← Kalibrieren mV			
Menue Elektroden			
Kalibrieren Temp			
Passcode	Passcode	 Neues Passwort vergeben 	52
Exit	Exit	– Menü verlassen	
← Passcode			

7.2.1 Kalibrieren µS (Kalibrierung der Leitfähigkeitsmessung)

Im Menü *"Kalibrieren* μ *S"* können Sie bei der Inbetriebnahme die angeschlossene Leitfähigkeitssonde an das Gerät anpassen und im Zuge späterer Reinigungen/Wartungen die Sonde gegebenenfalls neu kalibrieren.

Hinweis:

Gehen Sie zur Vorbereitung der Kalibrierung gemäß Kapitel 5.1 "Kalibrierung der Messzellen und Elektroden" vor.

Die Anpassung der Leitfähigkeitssonde an den *"MTOWER"* erfolgt mit einer sogenannten 2-Punkt-Kalibrierung. **Bei der erstmaligen Inbetriebnahme** sind der Messbereich (nur Modell MTOWER CDIND) und der Sondennullpunkt einzustellen. Bei späteren Kalibrierungen reicht es aus, lediglich die Sondensteilheit zu prüfen/korrigieren. D.h. Sie können sofort mit Punkt 2 oder 3 auf der nächsten Seite fortfahren.

Kalibrieren µS			
	Messbereich		
FS ►	30000 μS		
P1			
Mes لب	ssbereich ESC	OK	

Einstellung des Messbereichs (nur Modell MTOWER CDIND):

Der *"MTOWER CDIND"* mit induktiver Leitfähigkeitsmessung bietet die Möglichkeit zur Einstellung des Messbereichs:

- Gehen Sie auf "FS" und drücken Sie den Encoder, um auf das Feld "Messbereich" zu springen.
- Drücken Sie den Encoder erneut, um das Feld "Messbereich" zu öffnen.
- Stellen Sie den gewünschten Messbereich ein und bestätigen Sie die Eingabe durch Drücken des Encoders.
- Drehen Sie den Encoder, bis das Feld "OK" invers aufleuchtet und drücken Sie es erneut, um die Eingabe zu bestätigen.

Gerät	Modul	Messzelle	Messbereich
MTOWER CD	MDCD	konduktive Messzelle	0 – 3000 μS (nicht verstellbar)
MTOWER CDIND	MDIND	ECDIND PT	0 – 3000 μS 0 – 30000 μS
	MDECDSIND	ECDSIND PT	0 – 10000 µS

Kalibrieren µS		
	µS Wert	Kal-Wert
P1 ►	0006	0000
P2		
← 1. Punkt ESC C		ESC OK

1. Einstellung des Nullpunktes *"P1"* bei der <u>ersten</u> Inbetriebnahme:

- Drücken Sie den Encoder auf "P1". Das Feld "Kal-Wert" leuchtet invers auf.
- Sie können hier nun einen Wert durch Drücken und Drehen des Encoders eingeben. Es wird aber empfohlen, den Wert nur dann zu ändern, wenn die Anzeige "µS Wert" erheblich von "0" abweicht d.h. mehr als 3-5% vom max. Anzeigewert.
- Drehen Sie stattdessen den Encoder weiter, bis das Feld "OK" oder "ESC" invers aufleuchtet.
 - Durch Drücken auf "OK" bestätigen Sie den Nullpunkt.
 - Durch Drücken auf "ESC" verweigern Sie die Eingabe.

In beiden Fällen springt die Anzeige auf "P1" zurück.

7.2.1 Kalibrieren µS (Fortsetzung)

Kalibrieren µS		
P1	µS Wert	Kal-Wert
P2 ►	1435	1460
TE		
← 2. Punkt ESC OK		ESC OK

- 2. Einstellung der Sondensteilheit "*P2"* mit Hilfe einer Standardlösung mit bekannter Leitfähigkeit und ausgebauter Messsonde:
 - Ist die (konduktive) Sonde verschmutzt, dann reinigen Sie sie unter fließendem Wasser. Entfernen Sie dann durch leichtes Schütteln die Wassertropfen an der Sondenspitze, so dass die beiden Messelektroden keinen direkten Kontakt mehr miteinander haben.
 - Tauchen Sie die Sonde in eine Standardlösung mit bekanntem Leitwert.
 - Gehen Sie auf "P2" und drücken Sie den Encoder. Das Feld "Kal-Wert" leuchtet invers auf. Drücken Sie den Encoder erneut, um das Feld zu öffnen.
 - Stellen Sie nun den Leitwert der Standardlösung ein. Berücksichtigen Sie dabei die Temperatur gemäß der Tabelle auf dem Etikett der Standardlösung. Bestätigen Sie die Eingabe durch Drücken des Encoders. Das Feld "Kal-Wert" leuchtet wieder invers auf.
 - Drehen Sie den Encoder auf *"OK"* und drücken Sie es erneut, um die Eingabe zu bestätigen. Die Anzeige springt auf "P2" zurück.
 - Fahren Sie mit Punkt 4 fort.
- 3. Einstellung der Sondensteilheit *"P2"* mit Hilfe eines Handmessgerätes bei eingebauter Messsonde:
 - Nehmen Sie eine Probe aus dem Probenahmehahn der Durchflussarmatur und ermitteln Sie die Leitfähigkeit der Probe mit einem Handmessgerät.
 - Gehen Sie auf "P2" und drücken Sie den Encoder. Das Feld "Kal-Wert" leuchtet invers auf. Drücken Sie den Encoder erneut, um das Feld zu öffnen.
 - Stellen Sie nun den Anzeigewert des Handmessgerätes ein und bestätigen Sie die Eingabe durch Drücken des Encoders. Das Feld "OK" leuchtet invers auf.
 - Drücken Sie den Encoder erneut, um die Eingabe zu bestätigen. Die Anzeige springt auf "P2" zurück.
 - Fahren Sie mit Punkt 4 fort.

4. Kalibrierung abschließen

- Gehen Sie bis zum Punkt "Ex" und drücken Sie den Encoder.
 - Bei einer erfolgreichen Kalibrierung wird das Ergebnis für den "Offset" und die Sensorsteilheit "Slope" angezeigt.
 - Schlägt die Kalibrierung fehl, oder ist kein Eingabewert verändert worden, dann erscheint die Anzeige *"Keine Kalibrierung, OK für Exit"* auf dem Display und das Feld *"OK"* erscheint invers.
- Schließen Sie die Kalibrierung durch Drücken von "OK" ab.

Kalibrieren µS		
СА	Kalibrie	rung Ok
Ex 🕨	Offset:	061 mV
	Slope:	0.82
Exit ESC OK		

7.2.1 Kalibrieren µS (Fortsetzung)

Leitfähigkeitsmessungen sind sehr stark von der Wassertemperatur abhängig. Der "MTOWER" bietet zwei Möglichkeiten der Temperaturkompensation:

- TE = Manuelle Temperaturkompensation wenn kein Temperaturfühler angeschlossen ist, oder wenn die verwendete Leitfähigkeits-Messzelle nicht mit einem integrierten Temperaturfühler ausgestattet ist.
- CA = Automatische Temperaturkompensation.

Manuelle Temperaturkompensation "TE":

Bei der manuellen Temperaturkompensation messen Sie einfach die Temperatur des Kühlwassers mit einem Thermometer und geben den ermittelten Wert hier ein. Der *"MTOWER"* kompensiert dann den Leitwert auf diese Temperatur.

Automatische Temperaturkompensation "CA":

Bei der automatischen Temperaturkompensation kompensiert der *"MTOWER"* den Leitwert mit Hilfe des angeschlossenen Temperaturfühlers.

Einstellung:

- Ausschalten:

- Auto. Temp. CA ausgeschaltet und Man. Temp. (TE) aktiv
- Einschalten:

Auto. Temp. CA aktiv und Man. Temp. (TE) ausgeschaltet

Hinweis:

Beachten Sie zur automatischen Temperaturkompensation auch die Eingabe "*Tempkoeff"* in Menü "*Optionen"*.

Allgemeine Informationen:

Der Einfluss der Temperatur auf die Leitfähigkeitsmessung hängt von der zu messenden Flüssigkeit ab und kann nach folgender Formel auch rechnerisch ermittelt werden:

$C_{25} = C / (1+[a/100+(t-25)])$

Legende:

- C₂₅ = Leitfähigkeit der Flüssigkeit bei 25° C
- C = Leitfähigkeit der Flüssigkeit bei der gemessenen Temperatur
- a = Temperatur-Koeffizient "Alpha" der Flüssigkeit in Prozent pro Grad Celsius [%/°C]

In dieser Tabelle finden Sie beispielhaft einige Alpha-Werte (a) für Wasser bei verschiedenen Temperaturen:

Messwert µS/cm	Alpha (a)	Temperatur °C	Anzeigewert µS/cm
4524	3.5	27	4228
5227	1.2	35	4934
3924	2.1	40	2984

7.2.2 Kalibrieren mV (Kalibrierung der mV-Messung)

Die Kalibrierung (Eichung) der Redox-Elektrode erfolgt mit Hilfe einer Pufferlösungen mit bekannten Redox-Wert. Dazu werden üblicherweise Pufferlösungen mit einem Wert von 650mV verwendet.

Hinweis:

Beachten Sie auch die Temperaturabhängigkeit der Pufferlösung (siehe Flaschenetikett).

Kalibrieren mV		
mV-Wert	Kal-V	Vert
600	65	0
lpunkt	ESC	OK
	eren mV mV-Wert 600 Ipunkt	eren mV mV-Wert Kal-V 600 65 Ipunkt ESC

Kalibrierung des Elektroden-Nullpunktes "P1":

- Tauchen Sie die mV-Elektrode in die Flasche mit der Pufferlösung "650mV" und schwenken Sie die Elektrode leicht, bis sich die Anzeige "mV-Wert" stabilisiert.
- **2.** Drücken Sie den Encoder auf dem Feld *"P1"*, um die Kalibrierung zu starten. Der Wert in Feld *"Kal-Wert"* wird nun invers dargestellt.
- **3.** Hat die verwendete Pufferlösung den Wert *"650mV"* und liegt die Temperatur bei ca. 20° C, dann fahren Sie mit Punkt 5 fort.
- 4. Hat die verwendete Pufferlösung einen anderen mV-Wert, oder weicht die Temperatur der Pufferlösung erheblich von 20° C ab, dann drücken Sie den Encoder auf dem Feld *"Kal-Wert"* und stellen dort den mV-Wert gemäß der Tabelle auf dem Flaschenetikett ein. Drücken Sie den Encoder, um den neuen Kalibrierwert zu speichern.
- 5. Gehen Sie auf das Feld "OK" und drücken Sie den Encoder.

7.2.3 Kalibrieren Temp (Kalibrierung der Temperaturmessung)

starten.

Bei der Auslieferung des Gerätes ist auf den Klemmen 40 – 43 zum Anschluss eines Pt100 Temperaturfühlers ein Widerstand aufgelegt, der eine Temperatur von ca. 25° C simuliert. Wird eine Leitfähigkeitsmesszelle mit integriertem Temperaturfühler, oder ein *"ETEPT"*-Temperaturfühler an das Gerät angeschlossen, dann sollte er bei der Inbetriebnahme kalibriert werden.

Die Kalibrierung (Eichung) ist mit einem Vergleichsthermometer einfach durchzuführen. Dazu braucht die Leitfähigkeitsmesszelle, bzw. der Temperaturfühler nicht aus der Durchflussarmatur ausgebaut zu werden.

Hinweis:

Die Temperatur des Kühlwassers hat einen erheblichen Einfluss auf die Leitfähigkeitsmessung! Das Gerät führt mit Hilfe der Temperaturmessung eine automatische Temperaturkompensation des Leitwertes aus.

Menue Elektroden Kalibrieren mV Kalibrieren Temp Passcode

🚽 Kalibrieren Temperatur

Kalibrieren Temperatur		
	°C Wert	Kal-Wert
P1 ►	026.9	025.0
Ex		
← 1. Punkt ESC OK		

 Die Anzeige "°C Wert" zeigt die vom Temperaturfühler gemessene Kühlwassertemperatur an.

> Drücken Sie den Encoder auf dem Feld "P1", um die Kalibrierung zu starten.

> Wählen Sie das Untermenü "Kalibrieren Temp", um die Kalibrierung zu

- Gehen Sie dann auf das Feld "*OK*" und drücken Sie den Encoder, um die Kalibrierung durchzuführen.
- Gehen Sie abschließend auf das Feld "*Ex*", um die Kalibrierung zu abzuschließen.

Bei einer erfolgreichen Kalibrierung wird das Ergebnis für den *"Offset"* angezeigt.

• Schließen Sie die Kalibrierung durch Drücken von "OK" ab.

7.2.4 Passcode

In diesem Menü können Sie den Zugangscode für das Menü "*Elektro-den"* einstellen bzw. ändern. Ab Werk ist der Wert "0 0 0 0" (Default).

Hinweis:

Dieser "Passcode" ist nur dem Menü "Elektroden" zugeordnet!

8. Technische Daten

Betriebsdaten:		
Gerätebezeichnung:	MTOWER PLUS CDSIND-RH	
Umgebungstemperatur:	0 ÷ 45° C	
Lager- und Transporttemperatur:	-50 ÷ +50° C	
Gewicht:	ca. 2,1 kg	
Elektrische Daten:		
Spannungsversorgung: (siehe Typenschild)	85 ÷ 264 VAC – 50/60 Hz 24 VAC (20-32 VAC) 12 VDC (10-16 VDC)	
Leistungsaufnahme:	ca. 32 Watt	
Absicherung: Hauptabsicherung Elektronik	Feinsicherung 20 x 4 mm 6,3 A träge 3,15 A träge	
Schutzart:	IP 65	

Installation mit Rücklauf in die Kühlwasser-Druckleitung (nach dem Wärmetauscher) Kontaktwasserzähler "W.M.1 IN" Frischwasser В <u>h</u> Wärmetauscher mit $\Delta P > 0.3$ bar **PA-MTOWER** Durchflussarmatur A = Zulauf MANIFOLD B = Rücklauf C = Kanalanschluss D = 230 VAC-Steckdose, Absicherung 8 A А Motor-Absalzventil c)Kontaktwasserzähler "W.M. 2 BLEED" . Absalzmenge Kühlturmwasser-Abfluss Inhibitor Biozid Bio-Dispergator Umwälzpumpe min. DN50

Hinweis/Empfehlung:

Anhang: Montagebeispiel

- Anschlussmaterial: PVC-Rohr, 25 mm.
- Für Zu- und Ablauf je ein Absperrventil vorsehen.

LDT Dosiertechnik GmbH Vierenkamp 8 a DE-22453 Hamburg FON (040) 5528960-0 FAX (040) 5528960-29 Mail: mail@ldt.info Netz: www.ldt.info

Als Beitrag zum Umweltschutz wurden zur Herstellung dieses Gerätes, sowie des vorliegenden Handbuches nach Möglichkeit recycelbare Materialien verwendet. Entsorgen Sie schädliche Materialien immer in dafür vorgesehen Einrichtungen! Informationen zu Recyclingmöglichkeiten in Ihrer Nähe erhalten Sie bei den zuständigen Behörden!